Nonlocal elliptic problems with nonlinear argument transformations near the points of conjugation

作者: P L Gurevich

DOI: 10.1070/IM2003V067N06ABEH000460

关键词:

摘要: We consider elliptic equations of order $2m$ in a domain $G\subset\mathbb R^n$ with nonlocal conditions that connect the values unknown function and its derivatives on $(n-1)$-dimensional submanifolds $\Upsilon_i$ (where $\bigcup_i\Upsilon_i=\partial G$) $\omega_{is}(\overline\Upsilon_i)\subset\overline G$. Nonlocal problems dihedral angles arise as model near conjugation points $g\in\overline\Upsilon_i\cap\Upsilon_j\ne\varnothing$, $i\ne j$. study case where transformations $\omega_{is}$ correspond to nonlinear problems. It is proved operator problem remains Fredholm index does not change we pass from linear argument ones.

参考文章(8)
Ravi P. Agarwal, Donal O’Regan, Equations in Banach Spaces Springer Netherlands. pp. 277- 293 ,(2001) , 10.1007/978-94-010-0718-4_6
Alexander L Skubachevskii, On the stability of index of nonlocal elliptic problems Journal of Mathematical Analysis and Applications. ,vol. 160, pp. 323- 341 ,(1991) , 10.1016/0022-247X(91)90309-N
V. A. Kondrat'ev, Boundary problems for elliptic equations in domains with conical or angular points Trans. Moscow Math. Soc.. ,vol. 16, pp. 227- 313 ,(1967)
A L Skubachevskiĭ, ELLIPTIC PROBLEMS WITH NONLOCAL CONDITIONS NEAR THE BOUNDARY Mathematics of The Ussr-sbornik. ,vol. 57, pp. 293- 316 ,(1987) , 10.1070/SM1987V057N01ABEH003070
William Feller, The Parabolic Differential Equations and the Associated Semi-Groups of Transformations The Annals of Mathematics. ,vol. 55, pp. 468- 519 ,(1952) , 10.2307/1969644