Equations in Banach Spaces

作者: Ravi P. Agarwal , Donal O’Regan

DOI: 10.1007/978-94-010-0718-4_6

关键词:

摘要: In this chapter we present general existence principles for continuous and discrete problems on the infinite interval. Two problems, namely $$x(t) = h(t) + \int_0^t {g(t,s)f(s,x(s))ds,t \in [0,\infty )}$$ (6.1.1) and $$ x(t) \int_0^\infty )}$$ (6.1.2) are discussed. Also examine problem x(k) h(k) \sum\limits_{i 0}^\infty {G(k,i)f(i,x(i)),k \mathbb{N}.}$$ (6.1.3) In all of these values solution lie in some real Banach space E (here (E, ‖ · ‖) is not necessarily finite dimensional). Section 6.2 establish (6.1.1) (6.1.2). Here are interested solutions BC([0, ∞), E), where E) denotes bounded functions u : [0, ∞) → with norm |u|0 sup t∈[0, ‖u(t)‖. 6.3 concerns (6.1.3). We look BC(ℒ, E). maps w ℒ (discrete topology) ‖w‖0 k∈ℒ‖w(k)‖. Our main result here immediately yields an interesting exis tence criterion intervals.

参考文章(19)
Thomas I. Seidman, Two compactness lemmas Springer, Berlin, Heidelberg. pp. 162- 168 ,(1987) , 10.1007/BFB0077424
Eric Schechter, A survey of local existence theories for abstract nonlinear initial value problems Lecture Notes in Mathematics. pp. 136- 184 ,(1989) , 10.1007/BFB0086759
V. Lakshmikantham, Xinzhi Liu, Dajun Guo, Nonlinear Integral Equations in Abstract Spaces ,(1996)
B. Przeradzki, The existence of bounded solutions for differential equations in Hilbert spaces Annales Polonici Mathematici. ,vol. 56, pp. 103- 121 ,(1992) , 10.4064/AP-56-2-103-121
Jan Andres, Grzegorz Gabor, Lech Górniewicz, Boundary value problems on infinite intervals Transactions of the American Mathematical Society. ,vol. 351, pp. 4861- 4903 ,(1999) , 10.1090/S0002-9947-99-02297-7
Donal O'Regan, Radu Precup, Existence criteria for integral equations in banach spaces Journal of Inequalities and Applications. ,vol. 2001, pp. 841262- ,(2001) , 10.1155/S1025583401000066
Donal O'Regan, Volterra and Urysohn integral equations in Banach spaces Journal of Applied Mathematics and Stochastic Analysis. ,vol. 11, pp. 449- 464 ,(1998) , 10.1155/S1048953398000379