Sufficient conditions for regular solvability of an arbitrary order operator-differential equation with initial-boundary conditions

作者: Nashat Faried , Abdel Baset I. Ahmed , Mohamed A. Labeeb

DOI: 10.1186/S13662-020-02557-5

关键词:

摘要: On this paper, for an arbitrary order operator-differential equation with the weight $e^{\frac{-\alpha t}{2}}, \alpha \in (-\infty ,+ \infty )$, in space $W^{n+m}_{2}(R_{+};H)$, we attain sufficient conditions well-posedness of a regular solvable boundary value problem. These are provided only by operator coefficients investigated where leading part has multiple characteristics. We prove connection between lower bound spectrum higher-order differential main and exponential also obtain estimations norms intermediate derivatives. apply results paper to mixed problem partial equations (HOPDs).

参考文章(17)
Ravi P. Agarwal, Donal O’Regan, Equations in Banach Spaces Springer Netherlands. pp. 277- 293 ,(2001) , 10.1007/978-94-010-0718-4_6
Selim Grigorevich Krein, None, Linear Equations in Banach Spaces Birkhäuser Boston. ,(1982) , 10.1007/978-1-4684-8068-9
V. I. Sobolev, L. A. Li︠u︡sternik, Elements of functional analysis ,(1961)
Jacques Louis Lions, Enrico Magenes, Non-homogeneous boundary value problems and applications ,(1972)
S. S. Mirzoev, M. D. Karaaslan, R. Z. Gumbataliev, To the theory of operator-differential equations of the second order Doklady Mathematics. ,vol. 88, pp. 741- 743 ,(2013) , 10.1134/S1064562413060331
V.N. Pilipchuk, On essentially nonlinear dynamics of arches and rings Journal of Applied Mathematics and Mechanics. ,vol. 46, pp. 360- 364 ,(1982) , 10.1016/0021-8928(82)90112-5