作者: Frauke Feser
DOI: 10.1175/MWR3183.1
关键词:
摘要: Regional climate models (RCMs) are a widely used tool to describe regional-scale climate variability and change. However, the added value provided by such models is not well explored so far, and claims have been made that RCMs have little utility. Here, it is demonstrated that RCMs are indeed returning significant added value. Employing appropriate spatial filters, the scale-dependent skill of a state-of-the-art RCM (with and without nudging of large scales) is examined by comparing its skill with that of the global reanalyses driving the RCM. This skill is measured by pattern correlation coefficients of the global reanalyses or the RCM simulation and, as a reference, of an operational regional weather analysis. For the spatially smooth variable air pressure the RCM improves this aspect of the simulation for the medium scales if the RCM is driven with large-scale constraints, but not for the large scales. For the regionally more structured quantity near-surface temperature the added value is more obvious. The simulation of medium-scale 2-m temperature anomaly fields amounts to an increase of the mean pattern correlation coefficient up to 30%.