Learning algorithms with optimal stability in neural networks

作者: W Krauth , M Mezard

DOI: 10.1088/0305-4470/20/11/013

关键词:

摘要: To ensure large basins of attraction in spin-glass-like neural networks of two-state elements xi i mu=+ or-1. The authors propose to study learning rules with optimal stability Delta, where …

参考文章(7)
L. Personnaz, I. Guyon, G. Dreyfus, Information storage and retrieval in spin-glass like neural networks Journal de Physique Lettres. ,vol. 46, pp. 359- 365 ,(1985) , 10.1051/JPHYSLET:01985004608035900
Sigurd Diederich, Manfred Opper, Learning of correlated patterns in spin-glass networks by local learning rules. Physical Review Letters. ,vol. 58, pp. 949- 952 ,(1987) , 10.1103/PHYSREVLETT.58.949
S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by Simulated Annealing Science. ,vol. 220, pp. 671- 680 ,(1983) , 10.1126/SCIENCE.220.4598.671
I. Kanter, H. Sompolinsky, Associative recall of memory without errors Physical Review A. ,vol. 35, pp. 380- 392 ,(1987) , 10.1103/PHYSREVA.35.380
G. Weisbuch, F. Fogelman-Soulie, Scaling laws for the attractors of Hopfield networks Journal de Physique Lettres. ,vol. 46, pp. 623- 630 ,(1985) , 10.1051/JPHYSLET:019850046014062300
Daniel J. Amit, Hanoch Gutfreund, H. Sompolinsky, Storing infinite numbers of patterns in a spin-glass model of neural networks. Physical Review Letters. ,vol. 55, pp. 1530- 1533 ,(1985) , 10.1103/PHYSREVLETT.55.1530
J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities Proceedings of the National Academy of Sciences of the United States of America. ,vol. 79, pp. 2554- 2558 ,(1982) , 10.1073/PNAS.79.8.2554