Michigan style fuzzy classification for gene expression analysis

作者: Gerald Schaefer , Tomoharu Nakashima

DOI: 10.1007/978-3-642-11282-9_11

关键词:

摘要: Interest in microarray studies and gene expression analysis is growing as they are likely to provide promising avenues towards the understanding of fundamental questions biology medicine. In this paper we employment a hybrid fuzzy rule-based classification system for effective data. Our classifier consists set if-then rules that allows accurate non-linear input patterns. A small number selected through means genetic algorithm order compact analysis. Experimental results on various well-known datasets confirm efficacy presented approach.

参考文章(9)
Sandrine Dudoit, Jane Fridlyand, Terence P Speed, None, Comparison of discrimination methods for the classification of tumors using gene expression data Journal of the American Statistical Association. ,vol. 97, pp. 77- 87 ,(2002) , 10.1198/016214502753479248
U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, A. J. Levine, Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays Proceedings of the National Academy of Sciences of the United States of America. ,vol. 96, pp. 6745- 6750 ,(1999) , 10.1073/PNAS.96.12.6745
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, E. S. Lander, Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. ,vol. 286, pp. 531- 537 ,(1999) , 10.1126/SCIENCE.286.5439.531
H. Ishibuchi, T. Nakashima, Effect of rule weights in fuzzy rule-based classification systems IEEE Transactions on Fuzzy Systems. ,vol. 9, pp. 506- 515 ,(2001) , 10.1109/91.940964
H. Ishibuchi, T. Nakaskima, Improving the performance of fuzzy classifier systems for pattern classification problems with continuous attributes IEEE Transactions on Industrial Electronics. ,vol. 46, pp. 1057- 1068 ,(1999) , 10.1109/41.807986
G. Schaefer, T. Nakashima, Data Mining of Gene Expression Data by Fuzzy and Hybrid Fuzzy Methods international conference of the ieee engineering in medicine and biology society. ,vol. 14, pp. 23- 29 ,(2010) , 10.1109/TITB.2009.2033590
S. A. Vinterbo, E.-Y. Kim, L. Ohno-Machado, Small, fuzzy and interpretable gene expression based classifiers Bioinformatics. ,vol. 21, pp. 1964- 1970 ,(2005) , 10.1093/BIOINFORMATICS/BTI287
Ash A. Alizadeh, Michael B. Eisen, R. Eric Davis, Chi Ma, Izidore S. Lossos, Andreas Rosenwald, Jennifer C. Boldrick, Hajeer Sabet, Truc Tran, Xin Yu, John I. Powell, Liming Yang, Gerald E. Marti, Troy Moore, James Hudson, Lisheng Lu, David B. Lewis, Robert Tibshirani, Gavin Sherlock, Wing C. Chan, Timothy C. Greiner, Dennis D. Weisenburger, James O. Armitage, Roger Warnke, Ronald Levy, Wyndham Wilson, Michael R. Grever, John C. Byrd, David Botstein, Patrick O. Brown, Louis M. Staudt, Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling Nature. ,vol. 403, pp. 503- 511 ,(2000) , 10.1038/35000501
Gerald Schaefer, Tomoharu Nakashima, Yasuyuki Yokota, Hisao Ishibuchi, Fuzzy Classification of Gene Expression Data ieee international conference on fuzzy systems. pp. 1- 6 ,(2007) , 10.1109/FUZZY.2007.4295519