Transport of Long-Chain Fatty Acids across the Muscular Endothelium

作者: Ger J. Van der Vusse , Jan F. C. Glatz , Frans A. Van Nieuwenhoven , Robert S. Reneman , James B. Bassingthwaighte

DOI: 10.1007/978-1-4899-1928-1_17

关键词:

摘要: Both skeletal and cardiac muscle cells rely heavily on the oxidation of long-chain fatty acids to utilize chemically stored energy for contractile work. Under normal conditions are continuously supplied from microvascular compartment contracting myocytes. Exogenous transported tissue via blood either complexed albumin or covalently bound in triacylglycerols forming neutral lipid core circulating lipoproteins such as chylomicrons very low-density lipoproteins. The first barrier met by their way vascular myocytes is endothelium constituting capillary wall. After dissociation albumin—fatty acid complex release triacylglycerol lipoproteins, most likely transverse crossing luminal membrane, cytosol, subsequently abluminal wall endothelial cell. Transfer through interendothelial clefts lateral diffusion within phospholipid bilayer plasmalemma should be considered inconsequential. mechanism responsible transmembrane movement incompletely understood, although recent findings suggest involvement a number membrane-associated proteins. Kinetic studies have revealed that interaction albumin-fatty with membrane may accelerate complex, which facilitates uptake endothelium. Albumin-binding proteins (ABP) might instrumental this interaction. Moreover, plasmalemmal acid-binding protein (FABPpm), translocase (FAT) acid- transport (FATP) putatively involved molecules. Diffusion cytosol facilitated cytoplasmic protein, type related epithelial (E-FAPBc).

参考文章(31)
Edward S. Horton, Ronald L. Terjung, Exercise, nutrition, and energy metabolism Macmillan Publishing Company. ,(1988)
G. J. van der Vusse, J. F. Glatz, H. C. Stam, R. S. Reneman, Fatty acid homeostasis in the normoxic and ischemic heart. Physiological Reviews. ,vol. 72, pp. 881- 940 ,(1992) , 10.1152/PHYSREV.1992.72.4.881
M.M. Vork, J.F.C. Glatz, G.J. Van der Vusse, Modelling intracellular fatty acid transport: possible mechanistic role of cytoplasmic fatty acid-binding protein Prostaglandins Leukotrienes and Essential Fatty Acids. ,vol. 57, pp. 11- 16 ,(1997) , 10.1016/S0952-3278(97)90486-5
W. Stremmel, G. Strohmeyer, F. Borchard, S. Kochwa, P. D. Berk, Isolation and partial characterization of a fatty acid binding protein in rat liver plasma membranes Proceedings of the National Academy of Sciences of the United States of America. ,vol. 82, pp. 4- 8 ,(1985) , 10.1073/PNAS.82.1.4
R. Spahr, A. Kr�tzfeldt, S. Mertens, B. Siegmund, H.M. Piper, Fatty acids are not an important fuel for coronary microvascular endothelial cells. Molecular and Cellular Biochemistry. ,vol. 88, pp. 59- 64 ,(1989) , 10.1007/BF00223424
R Brenner, Effect of unsaturated acids on membrane structure and enzyme kinetics. Progress in Lipid Research. ,vol. 23, pp. 69- 96 ,(1984) , 10.1016/0163-7827(84)90008-0
R SCOW, E BLANCHETTEMACKIE, Why fatty acids flow in cell membranes. Progress in Lipid Research. ,vol. 24, pp. 197- 241 ,(1985) , 10.1016/0163-7827(85)90002-5
G VANDERVUSSE, S LITTLE, J BASSINGTHWAIGHTE, Transendothelial transport of arachidonic and palmitic acid in the isolated rabbit heart Journal of Molecular and Cellular Cardiology. ,vol. 19, ,(1987) , 10.1016/S0022-2828(87)80306-1