Finite-difference time-domain method for modelling of seismic wave propagation in viscoelastic media

作者: V.K. Kalyani , Pallavika , S.K. Chakraborty

DOI: 10.1016/J.AMC.2014.03.029

关键词:

摘要: Abstract A finite difference formulation for the equations of SH waves in viscoelastic media has been developed and applied to problem an infinite half space with a buried source emitting compressional pulse. dispersion relation by employing (FD) method, which used discuss stability criteria also obtaining phase group velocities media. Furthermore, effect variation parameter on velocities; wave propagation increase parameter; change at different locations from have studied. The are found be dispersive velocity increases decrease parameter. location important strength that intensity therefore its longevity is inversely proportional distance source, implying will progressively die out exponentially.

参考文章(32)
Agustin Udías, Principles of Seismology ,(2000)
Keiiti Aki, Paul G. Richards, Quantitative seismology : theory and methods ,(1980)
Peter Moczo, Johan O.A. Robertsson, Leo Eisner, The Finite-Difference Time-Domain Method for Modeling of Seismic Wave Propagation Advances in Wave Propagation in Heterogenous Earth. ,vol. 48, pp. 421- 516 ,(2007) , 10.1016/S0065-2687(06)48008-0
W. Maurice Ewing, Wenceslas S. Jardetzky, Frank Press, Elastic Waves in Layered Media Gff. ,vol. 80, pp. 128- 129 ,(1958) , 10.1080/11035895809447214
Jatinder Kaur, SK Tomar, VP Kaushik, None, Reflection and refraction of SH-waves at a corrugated interface between two laterally and vertically heterogeneous viscoelastic solid half-spaces International Journal of Solids and Structures. ,vol. 42, pp. 3621- 3643 ,(2005) , 10.1016/J.IJSOLSTR.2004.11.014
I. R. MUFTI, SEISMIC MODELING IN THE IMPLICIT MODE Geophysical Prospecting. ,vol. 33, pp. 619- 656 ,(1985) , 10.1111/J.1365-2478.1985.TB00770.X
K. R. Kelly, R. W. Ward, Sven Treitel, R. M. Alford, SYNTHETIC SEISMOGRAMS: A FINITE ‐DIFFERENCE APPROACH Geophysics. ,vol. 41, pp. 2- 27 ,(1976) , 10.1190/1.1440605
Nicolas Delépine, Luca Lenti, Guy Bonnet, Jean-François Semblat, Nonlinear Viscoelastic Wave Propagation: An Extension of Nearly Constant Attenuation Models Journal of Engineering Mechanics-asce. ,vol. 135, pp. 1305- 1314 ,(2009) , 10.1061/(ASCE)0733-9399(2009)135:11(1305)
Q. Gao, J.H. Lin, W.X. Zhong, W.P. Howson, F.W. Williams, Random wave propagation in a viscoelastic layered half space International Journal of Solids and Structures. ,vol. 43, pp. 6453- 6471 ,(2006) , 10.1016/J.IJSOLSTR.2005.11.007
Sushil Chaudhary, V.P. Kaushik, S.K. Tomar, Transmission of shear waves through a self-reinforced layer sandwiched between two inhomogeneous viscoelastic half-spaces International Journal of Mechanical Sciences. ,vol. 47, pp. 1455- 1472 ,(2005) , 10.1016/J.IJMECSCI.2005.04.011