Theory of a mixed-valent impurity

作者: T. V. Ramakrishnan , K. Sur

DOI: 10.1103/PHYSREVB.26.1798

关键词:

摘要: We present a perturbative theory for the thermodynamic properties of mixed-valent impurity in metal. The has two ionic configurations ${f}^{n\ensuremath{-}1}$ and ${f}^{n}$ (nondegenerate ${n}_{\ensuremath{\lambda}}$-fold degenerate, respectively) with energies ${\ensuremath{\epsilon}}_{0}$ (${\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{\ensuremath{\epsilon}}}_{f}+\ensuremath{\mu}$), difference \~{}\fi{}}{\ensuremath{\epsilon}}}_{f}\ensuremath{-}{\ensuremath{\epsilon}}_{0}$) being small. They mix via hybridization conduction electrons (matrix element ${V}_{\mathrm{kf}}$). show that $Dg({\stackrel{\ifmmode \~{}\fi{}}{\ensuremath{\epsilon}}}_{f}\ensuremath{-}{\ensuremath{\epsilon}}_{0})\ensuremath{\gtrsim}\ensuremath{-}{n}_{\ensuremath{\lambda}}\ensuremath{\Delta}\mathrm{ln}(\frac{D}{{n}_{\ensuremath{\lambda}}\ensuremath{\Delta}})$ Brillouin-Wigner perturbation is convergent. Here $\ensuremath{\Delta}={|{V}_{\mathrm{kf}}|}^{2}\ensuremath{\rho}(\ensuremath{\mu})$ virtual level width $2D$ conduction-electron bandwidth, $\ensuremath{\rho}(\ensuremath{\mu})$ density states at Fermi level. expansion parameter inverse orbital degeneracy ${n}_{\ensuremath{\lambda}}$. Since this large (6 to 8), quite convergent, lowest-order accurate. This checked by calculation higher-order terms various values \~{}\fi{}}{\ensuremath{\epsilon}}}_{f}\ensuremath{-}{\ensuremath{\epsilon}}_{0}$). In above range $f$-electron number seen change from ($n\ensuremath{-}1$) about $(n\ensuremath{-}1)+0.80$, so there strongly-mixed-valent impurity. Hybridization stabilizes singlet relative ${f}^{n}$, maximum stabilization energy (level shift) approximately ${n}_{\ensuremath{\lambda}}\ensuremath{\Delta}\mathrm{ln}(\frac{D}{{n}_{\ensuremath{\lambda}}\ensuremath{\Delta}})$ ${\ensuremath{\epsilon}}_{0}={\stackrel{\ifmmode \~{}\fi{}}{\ensuremath{\epsilon}}}_{f}$. ground state been obtained variationally Varma Yafet, renormalization-group arguments Haldane, Krishnamurthy, Wilkins, Wilson; used earlier Bringer Lustfeld. However, recognition ($\frac{1}{{n}_{\ensuremath{\lambda}}}$) as an consequent simplification are new. Physical such valence, susceptibility, specific heat calculated function ($\frac{{k}_{B}T}{\ensuremath{\Delta}}$) A simple way including effect alloying pressure described. Many characteristic metallic dilute concentrated systems, temperature dependence positive ${T}^{2}$ slope low-temperature susceptibility $\ensuremath{\chi}(T)$, broad it, relation between $\ensuremath{\chi}(0)$ Curie-Weiss high-temperature qualitatively explained quantitatively characterized first time. results directly applicable nondilute alloys. can also be applied perfect lattice systems except lowest temperatures where relatively small intersite coupling leads uniform Fermi-liquid state. Kondo limit, i.e., nearly-${f}^{n}$-valent which occurs $({\stackrel{\ifmmode \~{}\fi{}}{\ensuremath{\epsilon}}}_{f}\ensuremath{-}{\ensuremath{\epsilon}}_{0})\ensuremath{\ll}\ensuremath{-}{n}_{\ensuremath{\lambda}}\ensuremath{\Delta}$, not described theory.

参考文章(29)
C. M. Varma, Mixed-valence compounds Reviews of Modern Physics. ,vol. 48, pp. 219- 238 ,(1976) , 10.1103/REVMODPHYS.48.219
W.C.M. Mattens, P.F. de Châtel, A.C. Moleman, F.R. de Boer, Intermediate-valence state of Yb in Y- and Gd-substituted YbCuAl Physica B-condensed Matter. ,vol. 96, pp. 138- 143 ,(1979) , 10.1016/0378-4363(79)90110-4
P. Scoboria, J. E. Crow, T. Mihalisin, Resistive behavior and intermediate valence effects in La1−xCexPd3 and CePd3−xRhx Journal of Applied Physics. ,vol. 50, pp. 1895- 1897 ,(1979) , 10.1063/1.327156
W. Franz, F. Steglich, W. Zell, D. Wohlleben, F. Pobell, Intermediate Valence on Dilute Europium Ions Physical Review Letters. ,vol. 45, pp. 64- 67 ,(1980) , 10.1103/PHYSREVLETT.45.64
M. Luszik-Bhadra, H. J. Barth, H. J. Brocksch, G. Netz, D. Riegel, H. H. Bertschat, Microscopic Study of Intermediate Valence of Extremely Dilute Ce Ions in Thorium Physical Review Letters. ,vol. 47, pp. 871- 874 ,(1981) , 10.1103/PHYSREVLETT.47.871
E. R. Bauminger, D. Froindlich, I. Nowik, S. Ofer, I. Felner, I. Mayer, Charge Fluctuations in Europium in Metallic EuCu2Si2 Physical Review Letters. ,vol. 30, pp. 1053- 1056 ,(1973) , 10.1103/PHYSREVLETT.30.1053
E V Sampathkumaran, L C Gupta, R Vijayaraghavan, K V Gopalakrishnan, R G Pillay, H G Devare, A new and unique Eu-based mixed valence system: EuPd2Si2 Journal of Physics C: Solid State Physics. ,vol. 14, ,(1981) , 10.1088/0022-3719/14/9/006
A. Bringer, H. Lustfeld, Susceptibility of rare earth compounds in the intermediate valence state European Physical Journal B. ,vol. 28, pp. 213- 224 ,(1977) , 10.1007/BF01313044
F. D. M. Haldane, Scaling Theory of the Asymmetric Anderson Model. Physical Review Letters. ,vol. 40, pp. 416- 419 ,(1978) , 10.1103/PHYSREVLETT.40.416
C. M. Varma, Y. Yafet, Magnetic susceptibility of mixed-valence rare-earth compounds Physical Review B. ,vol. 13, pp. 2950- 2954 ,(1976) , 10.1103/PHYSREVB.13.2950