Proteomic identification of ERP29 as a key chemoresistant factor activated by the aggregating p53 mutant Arg282Trp.

作者: Y Zhang , Y Hu , J-L Wang , H Yao , H Wang

DOI: 10.1038/ONC.2017.152

关键词:

摘要: Mutation of the TP53 gene represents a prevalent genetic alteration in human cancers, and subset p53 mutants may form amyloid-like aggregates that contribute to gain oncogenic functions (GOFs) chemoresistance. Here we identify pathways mediate aggregation-associated GOF by using combined proteomic analysis genome-wide recruitment profiling. Mass spectrometry revealed activation unfolded protein response (UPR) pathway upregulation endoplasmic reticulum 29 (ERp29) R282WTP53-expressing cells were exposed cisplatin stress. Chromatin immunoprecipitation sequencing identified significant 'CCCASS' binding motif Arg282Trp, which is present promoter region ERP29 gene. The mutant upregulated mRNA expression levels, whereas targeting specific small interfering RNAs suppressed chemoresistant effect Arg282Trp. anti-aggregation peptide ReACp53 significantly decreased effect. These findings highlight role acquired chemoresistance cancer expressing aggregating Our results also suggest ERP29-mediated can be targeted ReACp53.

参考文章(66)
Jacques Ferlay, Isabelle Soerjomataram, Rajesh Dikshit, Sultan Eser, Colin Mathers, Marise Rebelo, Donald Maxwell Parkin, David Forman, Freddie Bray, Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer. ,vol. 136, ,(2015) , 10.1002/IJC.29210
Jin-Jian LU, De-Zhao LU, Yu-Fei CHEN, Ya-Ting DONG, Jun-Ren ZHANG, Ting LI, Zheng-Hai TANG, Zhen YANG, Proteomic analysis of hepatocellular carcinoma HepG2 cells treated with platycodin D. Chinese Journal of Natural Medicines. ,vol. 13, pp. 673- 679 ,(2015) , 10.1016/S1875-5364(15)30065-0
Anthony Mathelier, Oriol Fornes, David J. Arenillas, Chih-yu Chen, Grégoire Denay, Jessica Lee, Wenqiang Shi, Casper Shyr, Ge Tan, Rebecca Worsley-Hunt, Allen W. Zhang, François Parcy, Boris Lenhard, Albin Sandelin, Wyeth W. Wasserman, JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles Nucleic Acids Research. ,vol. 44, pp. 110- 115 ,(2016) , 10.1093/NAR/GKV1176
Ralph W deVere White, Nancy J. Nesslinger, Xu Bao Shi, Androgen-independent growth of LNCaP prostate cancer cells is mediated by gain-of-function mutant p53. Cancer Research. ,vol. 63, pp. 2228- 2233 ,(2003)
Riccardo Di Fiore, Michela Marcatti, Rosa Drago-Ferrante, Antonella D'Anneo, Michela Giuliano, Daniela Carlisi, Anna De Blasio, Francesca Querques, Lucio Pastore, Giovanni Tesoriere, Renza Vento, Mutant p53 gain of function can be at the root of dedifferentiation of human osteosarcoma MG63 cells into 3AB-OS cancer stem cells Bone. ,vol. 60, pp. 198- 212 ,(2014) , 10.1016/J.BONE.2013.12.021
Jie Xu, Joke Reumers, José R Couceiro, Frederik De Smet, Rodrigo Gallardo, Stanislav Rudyak, Ann Cornelis, Jef Rozenski, Aleksandra Zwolinska, Jean-Christophe Marine, Diether Lambrechts, Young-Ah Suh, Frederic Rousseau, Joost Schymkowitz, Gain of function of mutant p53 by coaggregation with multiple tumor suppressors Nature Chemical Biology. ,vol. 7, pp. 285- 295 ,(2011) , 10.1038/NCHEMBIO.546
Ran Brosh, Varda Rotter, When mutants gain new powers: news from the mutant p53 field Nature Reviews Cancer. ,vol. 9, pp. 701- 713 ,(2009) , 10.1038/NRC2693
Cristian A. Lasagna-Reeves, Audra L. Clos, Diana Castillo-Carranza, Urmi Sengupta, Marcos Guerrero-Muñoz, Brent Kelly, Richard Wagner, Rakez Kayed, Dual role of p53 amyloid formation in cancer; loss of function and gain of toxicity Biochemical and Biophysical Research Communications. ,vol. 430, pp. 963- 968 ,(2013) , 10.1016/J.BBRC.2012.11.130
Sergio Acin, Zhongyou Li, Olga Mejia, Dennis R Roop, Adel K El-Naggar, Carlos Caulin, Gain-of-function mutant p53 but not p53 deletion promotes head and neck cancer progression in response to oncogenic K-ras The Journal of Pathology. ,vol. 225, pp. 479- 489 ,(2011) , 10.1002/PATH.2971