Direct Solar Radiation Prediction Based on Soft-Computing Algorithms Including Novel Predictive Atmospheric Variables

作者: S. Salcedo-Sanz , C. Casanova-Mateo , A. Pastor-Sánchez , D. Gallo-Marazuela , A. Labajo-Salazar

DOI: 10.1007/978-3-642-41278-3_39

关键词:

摘要: In this paper we tackle a problem of solar radiation prediction with Soft-Computing Techniques. We introduce new atmospheric input variables in the problem, which help to obtain an accurate radiation. test performance two state-of-the art algorithms: Extreme Learning Machines and Support Vector regression algorithms, real Murcia, Spain, where have obtained excellent results proposed techniques.

参考文章(20)
Renata Dmowska, James R. Holton, International Geophysics Series International Geophysics. ,vol. 49, pp. 579- 581 ,(1992) , 10.1016/S0074-6142(09)60119-4
Alex J. Smola, Bernhard Schölkopf, A tutorial on support vector regression Statistics and Computing. ,vol. 14, pp. 199- 222 ,(2004) , 10.1023/B:STCO.0000035301.49549.88
Tamer Khatib, Azah Mohamed, K. Sopian, A review of solar energy modeling techniques Renewable & Sustainable Energy Reviews. ,vol. 16, pp. 2864- 2869 ,(2012) , 10.1016/J.RSER.2012.01.064
Guang-Bin Huang, Hongming Zhou, Xiaojian Ding, Rui Zhang, Extreme Learning Machine for Regression and Multiclass Classification systems man and cybernetics. ,vol. 42, pp. 513- 529 ,(2012) , 10.1109/TSMCB.2011.2168604
K. N. Liou, Craig Bohren, An Introduction to Atmospheric Radiation Physics Today. ,vol. 34, pp. 66- 67 ,(1981) , 10.1063/1.2914664
Atsu S.S. Dorvlo, Joseph A. Jervase, Ali Al-Lawati, Solar radiation estimation using artificial neural networks Applied Energy. ,vol. 71, pp. 307- 319 ,(2002) , 10.1016/S0306-2619(02)00016-8
Jianwu Zeng, Wei Qiao, Short-term solar power prediction using a support vector machine Renewable Energy. ,vol. 52, pp. 118- 127 ,(2013) , 10.1016/J.RENENE.2012.10.009