A 2D nonlinear multiring model for blood flow in large elastic arteries

作者: Arthur R. Ghigo , Jose-Maria Fullana , Pierre-Yves Lagrée

DOI: 10.1016/J.JCP.2017.08.039

关键词:

摘要: In this paper, we propose a two-dimensional nonlinear "multiring" model for blood flow in axisymmetric elastic arteries. It is designed to overcome the numerical difficulties of three-dimensional fluid-structure interaction simulations without using oversimplifications necessary obtain one-dimensional models flow. This multiring derived by integrating over concentric rings fluid simplified long-wave Navier-Stokes equations coupled an arterial wall. The resulting system balance laws provides unified framework which both motion and displacement wall are dealt with simultaneously. mathematical structure allows us use finite volume method that guarantees conservation mass positivity solution can deal flows large deformations We show at reasonable computational cost asymptotically valid description velocity profiles other averaged quantities (wall shear stress, rate, ...) quasi-rigid particular, validate against well-known solutions such as Womersley or Poiseuille well steady boundary layer constricted expanded tubes.

参考文章(72)
L. Gosse, A.-Y. Leroux, Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes Comptes rendus de l'Académie des sciences. Série 1, Mathématique. ,vol. 323, pp. 543- 546 ,(1996)
Marie-Odile Bristeau, Benoit Coussin, Boundary Conditions for the Shallow Water Equations solved by Kinetic Schemes INRIA. ,(2001)
Gerhard A. Holzapfel, Thomas C. Gasser, Ray W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models Journal of Elasticity. ,vol. 61, pp. 1- 48 ,(2000) , 10.1023/A:1010835316564
Lucas O. Müller, Eleuterio F. Toro, A global multiscale mathematical model for the human circulation with emphasis on the venous system International Journal for Numerical Methods in Biomedical Engineering. ,vol. 30, pp. 681- 725 ,(2014) , 10.1002/CNM.2622
Hermann Schlichting, Boundary layer theory ,(1955)
G.R. Barrenechea, F. Chouly, A finite element method for the resolution of the Reduced Navier-Stokes/Prandtl equations Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik. ,vol. 89, pp. 54- 68 ,(2009) , 10.1002/ZAMM.200800068
Jordi Alastruey, KH Parker, J Peiró, SJ2511989 Sherwin, None, Analysing the pattern of pulse waves in arterial networks: a time-domain study Journal of Engineering Mathematics. ,vol. 64, pp. 331- 351 ,(2009) , 10.1007/S10665-009-9275-1