The comparison of magnetic circuits used in magnetic hyperthermia

作者: Andrzej Skumiel , Błażej Leszczyński , Matus Molcan , Milan Timko

DOI: 10.1016/J.JMMM.2016.07.018

关键词:

摘要: Abstract The magnetic nanoparticle hyperthermia experiments require a precise system of field generation. In this article we present the design three circuits that can generate an alternating (the double-layer solenoid, Helmholtz coils, inductor with C-shaped ferromagnetic core) and one rotating field. theoretical calculations have been made to compare intensity distribution along axis coils. Also inhomogeneity was determined. Similar for core inductor. It also shown relationship between air gap width ferrite core. Moreover, it proposal generator consisting pairs phase-tuned inductors. experimental section presented results calorimetric measurements performed on water dispersion SPIONs.

参考文章(23)
J. Rácz, P. F. de Châtel, I. A. Szabó, L. Szunyogh, I. Nándori, Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles. Physical Review E. ,vol. 93, pp. 012607- ,(2016) , 10.1103/PHYSREVE.93.012607
Leonard S. Bobrow, Fundamentals of electrical engineering ,(1995)
P. de la Presa, Y. Luengo, M. Multigner, R. Costo, M. P. Morales, G. Rivero, A. Hernando, Study of Heating Efficiency as a Function of Concentration, Size, and Applied Field in γ-Fe2O3 Nanoparticles Journal of Physical Chemistry C. ,vol. 116, pp. 25602- 25610 ,(2012) , 10.1021/JP310771P
Alsayed A.M. Elsherbini, Mahmoud Saber, Mohamed Aggag, Ahmed El-Shahawy, Hesham A.A. Shokier, Magnetic nanoparticle-induced hyperthermia treatment under magnetic resonance imaging. Magnetic Resonance Imaging. ,vol. 29, pp. 272- 280 ,(2011) , 10.1016/J.MRI.2010.08.010
Cristina Riggio, Maria Pilar Calatayud, Clare Hoskins, Josephine Pinkernelle, Beatriz Sanz, Teobaldo Enrique Torres, Manuel Ricardo Ibarra, Lijun Wang, Gerburg Keilhoff, Gerardo Fabian Goya, Vittoria Raffa, Alfred Cuschieri, Poly-l-lysine-coated magnetic nanoparticles as intracellular actuators for neural guidance. International Journal of Nanomedicine. ,vol. 7, pp. 3155- 3166 ,(2012) , 10.2147/IJN.S28460
VA Sharapova, MA Uimin, AA Mysik, AE Ermakov, None, Heat release in magnetic nanoparticles in AC magnetic fields The Physics of Metals and Metallography. ,vol. 110, pp. 5- 12 ,(2010) , 10.1134/S0031918X10070021
R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media IEEE Transactions on Magnetics. ,vol. 17, pp. 1247- 1248 ,(1981) , 10.1109/TMAG.1981.1061188
Challa SSR Kumar, Faruq Mohammad, None, Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery Advanced Drug Delivery Reviews. ,vol. 63, pp. 789- 808 ,(2011) , 10.1016/J.ADDR.2011.03.008
T. V. Lyutyy, S. I. Denisov, A. Yu. Peletskyi, C. Binns, Energy dissipation in single-domain ferromagnetic nanoparticles: Dynamical approach Physical Review B. ,vol. 91, pp. 054425- ,(2015) , 10.1103/PHYSREVB.91.054425
M. Respaud, L.-M. Lacroix, J. Carrey, A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles. Review of Scientific Instruments. ,vol. 79, pp. 093909- ,(2008) , 10.1063/1.2972172