Identifying geochemical anomalies associated with Au–Cu mineralization using multifractal and artificial neural network models in the Ningqiang district, Shaanxi, China

作者: Jiangnan Zhao , Shouyu Chen , Renguang Zuo

DOI: 10.1016/J.GEXPLO.2015.06.018

关键词:

摘要: … extensively developed in the study area, is the main host of the Cu and Au ore deposits. … information regarding geochemical processes or vectoring toward concealed ore deposits (…

参考文章(50)
Alok Porwal, E. J. M. Carranza, M. Hale, Artificial Neural Networks for Mineral-Potential Mapping: A Case Study from Aravalli Province, Western India Natural resources research. ,vol. 12, pp. 155- 171 ,(2003) , 10.1023/A:1025171803637
Arman Mohammadi Gonbadi, Seyed Hasan Tabatabaei, Emmanuel John M. Carranza, Supervised geochemical anomaly detection by pattern recognition Journal of Geochemical Exploration. ,vol. 157, pp. 81- 91 ,(2015) , 10.1016/J.GEXPLO.2015.06.001
Berndt Müller, Joachim Reinhardt, Neural Networks: An Introduction ,(2014)
Anlin Guo, Dingwu Zhou, Guowei Zhang, Yong Sun, Zaiping Yu, Qingren Meng, Orogenesis and dynamics of the Qinling Orogen Science in China Series D: Earth Sciences. ,vol. 39, pp. 225- 234 ,(1996) , 10.1360/YD1996-39-3-225
Qiuming Cheng, Spatial and scaling modelling for geochemical anomaly separation Journal of Geochemical Exploration. ,vol. 65, pp. 175- 194 ,(1999) , 10.1016/S0375-6742(99)00028-X
Jiangnan Zhao, Shouyu Chen, Renguang Zuo, Emmanuel John M. Carranza, Mapping complexity of spatial distribution of faults using fractal and multifractal models: vectoring towards exploration targets Computers & Geosciences. ,vol. 37, pp. 1958- 1966 ,(2011) , 10.1016/J.CAGEO.2011.04.007