Multigrid method for H (div) in three dimensions

作者: Ralf Hiptmair

DOI:

关键词:

摘要: We are concerned with the design and analysis of a multigrid algorithm for (div; )-elliptic linear variational problems. The discretization is based on )-conforming Raviart-Thomas elements. A thorough examination relevant bilinear form reveals that separate treatment vector fields in kernel divergence operator its complement paramount. exploit representation discrete solenoidal as curls finite element functions so-called Nedelec spaces. It turns out combined nodal multilevel decomposition both spaces provides foundation viable method. Its Gaus-Seidel smoother involves an extra stage where error components tackled. By means elaborate duality techniques we can show asymptotic optimality case uniform refinement. Numerical experiments confirm typical efficiency actually achieved model

参考文章(22)
Peter Oswald, Multilevel Finite Element Approximation Vieweg+Teubner Verlag. ,(1994) , 10.1007/978-3-322-91215-2
R. Hiptmair, T. Schiekofer, B. Wohlmuth, Multilevel preconditioned augmented Lagrangian techniques for 2nd order mixed problems Computing. ,vol. 57, pp. 25- 48 ,(1996) , 10.1007/BF02238356
J. Bey, Tetrahedral grid refinement Computing. ,vol. 55, pp. 355- 378 ,(1995) , 10.1007/BF02238487
William F. Mitchell, Robert Skeel, Unified multilevel adaptive finite element methods for elliptic problems University of Illinois at Urbana-Champaign. ,(1988)
Jean Roberts, Jean-Marie Thomas, Mixed and hybrid finite element methods Springer-Verlag. ,(1991) , 10.1007/978-1-4612-3172-1
Susanne C. Brenner, An Optimal-Order Multigrid Method for P1 Nonconforming Finite Elements Mathematics of Computation. ,vol. 52, pp. 1- 15 ,(1989) , 10.1090/S0025-5718-1989-0946598-X
Panayot S. Vassilevski, Junping Wang, Multilevel iterative methods for mixed finite element discretizations of elliptic problems Numerische Mathematik. ,vol. 63, pp. 503- 520 ,(1992) , 10.1007/BF01385872
Todd Dupont, Ridgway Scott, Polynomial approximation of functions in Sobolev spaces Mathematics of Computation. ,vol. 34, pp. 441- 463 ,(1980) , 10.1090/S0025-5718-1980-0559195-7
Xuejun Zhang, Multilevel Schwarz methods Numerische Mathematik. ,vol. 63, pp. 521- 539 ,(1992) , 10.1007/BF01385873