Multigrid Computation of Axisymmetric Electromagnetic Fields

作者: S. Börm , R. Hiptmair

DOI: 10.1023/A:1014533409747

关键词:

摘要: The focus of this paper is on boundary value problems for Maxwell's equations that feature cylindrical symmetry both the domain Ω⊂R 3 and data. Thus, by resorting to coordinates, a reduction two dimensions possible. However, coordinates introduce potentially malicious singularity at axis rendering variational degenerate. As consequence, analysis multigrid solvers along lines theory confronts severe difficulties. Line relaxation in radial direction semicoarsening can successfully reign degeneracy. In addition, lack H 1-ellipticity double-curl operator entails using special hybrid smoothing procedures. All these techniques combined yield fast solver. theoretical investigation method relies blending generalized Fourier modern theory. We first determine invariant subspaces iteration analyze smoothers therein. Under certain assumptions material parameters we manage show uniform convergence symmetric V-cycle.

参考文章(43)
Ralf Hiptmair, Multigrid method for H (div) in three dimensions Electronic Transactions on Numerical Analysis. ,vol. 6, pp. 133- 152 ,(1997)
F.R. Cooray, G.I. Costache, An Overview of the Absorbing Boundary Conditions Journal of Electromagnetic Waves and Applications. ,vol. 5, pp. 1041- 1054 ,(1991) , 10.1163/156939391X00347
Dimitri J. Mavriplis, Directional coarsening and smoothing for anisotropic Navier-Stokes problems. ETNA. Electronic Transactions on Numerical Analysis [electronic only]. ,vol. 6, pp. 182- 197 ,(1997)
Pieter Wesseling (Dr. Ir.), An Introduction to Multigrid Methods ,(1992)
Wolfgang Hackbusch, The frequency decomposition multi-grid method Numerische Mathematik. ,vol. 56, pp. 229- 245 ,(1989) , 10.1007/BF01409786
T. Washio, C. W. Oosterlee, Flexible Multiple Semicoarsening for Three-Dimensional Singularly Perturbed Problems SIAM Journal on Scientific Computing. ,vol. 19, pp. 1646- 1666 ,(1998) , 10.1137/S1064827596305829
C.W. Oosterlee, F.J. Gaspar, T. Washio, R. Wienands, Multigrid Line Smoothers for Higher Order Upwind Discretizations of Convection-Dominated Problems Journal of Computational Physics. ,vol. 139, pp. 274- 307 ,(1998) , 10.1006/JCPH.1997.5854