The Convergence of V-Cycle Multigrid Algorithms for Axisymmetric Laplace and Maxwell Equations

作者: Jayadeep Gopalakrishnan , Joseph E. Pasciak

DOI: 10.1090/S0025-5718-06-01884-9

关键词:

摘要: We investigate some simple finite element discretizations for the axisymmetric Laplace equation and azimuthal component of Maxwell equations as well multigrid algorithms these discretizations. Our analysis is targeted at model problems our main result that standard V-cycle with point smoothing converges a rate independent number unknowns. This contrary to suggestions in existing literature line relaxations semicoarsening are needed overcome difficulties caused by singularities problems. proceeds applying known regularity based theory. In order apply this theory, we prove results certain weighted Sobolev spaces. These, together new error estimates norms, ingredients analysis.

参考文章(18)
S. Börm, R. Hiptmair, Multigrid Computation of Axisymmetric Electromagnetic Fields Advances in Computational Mathematics. ,vol. 16, pp. 331- 356 ,(2002) , 10.1023/A:1014533409747
Alois Kufner, Weighted Sobolev Spaces ,(1985)
James H. Bramble, Xuejun Zhang, The analysis of multigrid methods Handbook of Numerical Analysis. ,vol. 7, pp. 173- 415 ,(2000) , 10.1016/S1570-8659(00)07003-4
Christine Bernardi, Yvon Maday, Monique Dauge, Spectral Methods for Axisymmetric Domains ,(1999)
Jocelyne Bédard, New-York, 1985 ,(2005)
G. Pólya, G. H. Hardy, J. E. Littlewood, Inequalities (Cambridge Mathematical Library) Cambridge University Press. ,(1934)
Nicolas Neuss, V-cycle Convergence with Unsymmetric Smoothers and Application to an Anisotropic Model Problem SIAM Journal on Numerical Analysis. ,vol. 35, pp. 1201- 1212 ,(1998) , 10.1137/S0036142996310848
C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional non-smooth domains Mathematical Methods in the Applied Sciences. ,vol. 21, pp. 823- 864 ,(1998) , 10.1002/(SICI)1099-1476(199806)21:9<823::AID-MMA976>3.0.CO;2-B
F. Assous, P. Ciarlet, S. Labrunie, Theoretical tools to solve the axisymmetric Maxwell equations Mathematical Methods in the Applied Sciences. ,vol. 25, pp. 49- 78 ,(2002) , 10.1002/MMA.279