18 Aerobic Degradation of Aromatic Hydrocarbons: Enzyme Structures and Catalytic Mechanisms

作者: J. D. Haddock

DOI:

关键词:

摘要: Aerobic microbial degradation pathways for aromatic hydrocarbons utilize enzymes that catalyze reactions between molecular oxygen and the substrate. Hydroxylases initiate of inert by addition atoms as hydroxyl groups to ring. Monooxygenases introduce one atom while dioxygenases both. Ring-cleavage decyclize compounds allowing products be channeled into cell’s central metabolic support growth. Aromatic hydrocarbon oxygenases are often composed several different protein components subunits, but most iron at active site bind activate it or substrate during catalysis.

参考文章(37)
Philip A. Block, David S. Robinson, Dalbir S. Sethi, Richard A. Brown, Oxidation of organic compounds ,(2003)
Jennifer K. Schwartz, Pin-pin Wei, Kevin H. Mitchell, Brian G. Fox, Edward I. Solomon, Geometric and Electronic Structure Studies of the Binuclear Nonheme Ferrous Active Site of Toluene-4-monooxygenase: Parallels with Methane Monooxygenase and Insight into the Role of the Effector Proteins in O2 Activation Journal of the American Chemical Society. ,vol. 130, pp. 7098- 7109 ,(2008) , 10.1021/JA800654D
Toshiya Senda, Kazuyuki Sugiyama, Hiroki Narita, Takeshi Yamamoto, Kazuhide Kimbara, Masao Fukuda, Mitsuo Sato, Keiji Yano, Yukio Mitsui, Three-dimensional structures of free form and two substrate complexes of an extradiol ring-cleavage type dioxygenase, the BphC enzyme from Pseudomonas sp. strain KKS102. Journal of Molecular Biology. ,vol. 255, pp. 735- 752 ,(1996) , 10.1006/JMBI.1996.0060
Elena G Kovaleva, John D Lipscomb, Versatility of biological non-heme Fe(II) centers in oxygen activation reactions. Nature Chemical Biology. ,vol. 4, pp. 186- 193 ,(2008) , 10.1038/NCHEMBIO.71
S. Han, L. D. Eltis, K. N. Timmis, S. W. Muchmore, J. T. Bolin, Crystal Structure of the Biphenyl-Cleaving Extradiol Dioxygenase from a PCB-Degrading Pseudomonad Science. ,vol. 270, pp. 976- 980 ,(1995) , 10.1126/SCIENCE.270.5238.976
Matthew W. Vetting, David A. D'Argenio, L. Nicholas Ornston, Douglas H. Ohlendorf, Structure of Acinetobacter strain ADP1 protocatechuate 3, 4-dioxygenase at 2.2 A resolution: implications for the mechanism of an intradiol dioxygenase. Biochemistry. ,vol. 39, pp. 7943- 7955 ,(2000) , 10.1021/BI000151E
Martin Hülsmeyer, Hans-Jürgen Hecht, Karsten Niefind, Dietmar Schomburg, Bernd Hofer, Kenneth N. Timmis, Lindsay D. Eltis, Crystal structure of cis‐biphenyl‐2,3‐dihydrodiol‐2,3‐dehydrogenase from a PCB degrader at 2.0 Å resolution Protein Science. ,vol. 7, pp. 1286- 1293 ,(1998) , 10.1002/PRO.5560070603
Daniel J Ferraro, Eric N Brown, Chi-Li Yu, Rebecca E Parales, David T Gibson, S Ramaswamy, Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1 BMC Structural Biology. ,vol. 7, pp. 10- 10 ,(2007) , 10.1186/1472-6807-7-10
Frédéric H. Vaillancourt, Christopher J. Barbosa, Thomas G. Spiro, Jeffrey T. Bolin, Michael W. Blades, Robin F. B. Turner, Lindsay D. Eltis, Definitive Evidence for Monoanionic Binding of 2,3-Dihydroxybiphenyl to 2,3-Dihydroxybiphenyl 1,2-Dioxygenase from UV Resonance Raman Spectroscopy, UV/Vis Absorption Spectroscopy, and Crystallography Journal of the American Chemical Society. ,vol. 124, pp. 2485- 2496 ,(2002) , 10.1021/JA0174682