n-site approximations and coherent-anomaly-method analysis for a stochastic sandpile.

作者: Ronald Dickman

DOI: 10.1103/PHYSREVE.66.036122

关键词:

摘要: $n$-site cluster approximations for a stochastic sandpile in one dimension are developed. A height restriction is imposed to limit the number of states: each site can harbor at most two particles (height ${z}_{i}l~2).$ (This yields considerable simplification over unrestricted case, which states per unbounded.) On basis results $nl~11$ sites, critical particle density as ${\ensuremath{\zeta}}_{c}=0.930(1)$ estimated, good agreement with simulations. coherent anomaly analysis estimates order parameter exponent $[\ensuremath{\beta}=0.41(1)]$ and relaxation time $({\ensuremath{\nu}}_{||}\ensuremath{\simeq}2.5).$

参考文章(37)
Ronald Dickman, Joaquin Marro, Nonequilibrium Phase Transitions in Lattice Models ,(1999)
S S Manna, Two-state model of self-organized criticality Journal of Physics A. ,vol. 24, ,(1991) , 10.1088/0305-4470/24/7/009
Alessandro Vespignani, Stefano Zapperi, Order parameter and scaling fields in self-organized criticality Physical Review Letters. ,vol. 78, pp. 4793- 4796 ,(1997) , 10.1103/PHYSREVLETT.78.4793
G. Grinstein, Z.-W. Lai, Dana A. Browne, Critical phenomena in a nonequilibrium model of heterogeneous catalysis. Physical Review A. ,vol. 40, pp. 4820- 4823 ,(1989) , 10.1103/PHYSREVA.40.4820
Ronald Dickman, Tânia Tomé, Mário J. de Oliveira, Sandpiles with height restrictions. Physical Review E. ,vol. 66, pp. 016111- ,(2002) , 10.1103/PHYSREVE.66.016111
Tânia Tomé, Mário J.de Oliveira, NONCLASSICAL CRITICAL EXPONENTS OUT OF MEAN-FIELD RESULTS Physica A-statistical Mechanics and Its Applications. ,vol. 260, pp. 99- 105 ,(1998) , 10.1016/S0378-4371(98)00279-9
Alessandro Vespignani, Ronald Dickman, Miguel A. Muñoz, Stefano Zapperi, DRIVING, CONSERVATION, AND ABSORBING STATES IN SANDPILES Physical Review Letters. ,vol. 81, pp. 5676- 5679 ,(1998) , 10.1103/PHYSREVLETT.81.5676
Afshin Montakhab, J. M. Carlson, Avalanches, transport, and local equilibrium in self-organized criticality Physical Review E. ,vol. 58, pp. 5608- 5619 ,(1998) , 10.1103/PHYSREVE.58.5608
Alessandro Chessa, Enzo Marinari, Alessandro Vespignani, Energy Constrained Sandpile Models Physical Review Letters. ,vol. 80, pp. 4217- 4220 ,(1998) , 10.1103/PHYSREVLETT.80.4217