Nonparametric Density Estimators in Abstract and Homogeneous Spaces

作者: Wolfgang Wertz

DOI: 10.1007/978-1-4612-5934-3_28

关键词:

摘要: The problem of estimating probability densities by generalized kernel estimators, based on independent observations in an abstract space is investigated. Some asymptotic results (consistency, unbiasedness) are given and applications to special spaces X (first all homogeneous spaces) considered.

参考文章(11)
K. V. Mardia, R. J. Gadsden, A Small Circle of Best Fit for Spherical Data and Areas of Vulcanism Applied Statistics. ,vol. 26, pp. 238- 245 ,(1977) , 10.2307/2346963
Eugene F. Schuster, Note on the Uniform Convergence of Density Estimates Annals of Mathematical Statistics. ,vol. 41, pp. 1347- 1348 ,(1970) , 10.1214/AOMS/1177696910
É. A. Nadaraya, On Non-Parametric Estimates of Density Functions and Regression Curves Theory of Probability and Its Applications. ,vol. 10, pp. 186- 190 ,(1965) , 10.1137/1110024
Murray Rosenblatt, Remarks on Some Nonparametric Estimates of a Density Function Annals of Mathematical Statistics. ,vol. 27, pp. 832- 837 ,(1956) , 10.1214/AOMS/1177728190
Eugene F. Schuster, Estimation of a Probability Density Function and Its Derivatives Annals of Mathematical Statistics. ,vol. 40, pp. 1187- 1195 ,(1969) , 10.1214/AOMS/1177697495
Wassily Hoeffding, Probability Inequalities for sums of Bounded Random Variables Journal of the American Statistical Association. ,vol. 58, pp. 13- 30 ,(1963) , 10.1007/978-1-4612-0865-5_26
W. Wertz, Über ein nichtparametrisches Schätzproblem Metrika. ,vol. 26, pp. 157- 167 ,(1979) , 10.1007/BF01893484
R. J. Beran, Testing for uniformity on a compact homogeneous space Journal of Applied Probability. ,vol. 5, pp. 177- 195 ,(1968) , 10.1017/S002190020003237X