Representations of Algebraic Quantum Groups and Reconstruction Theorems for Tensor Categories

作者: Michael Müger , John E Roberts , Lars Tuset

DOI: 10.1023/B:ALGE.0000048337.34810.6F

关键词:

摘要: We give a pedagogical survey of those aspects the abstract representation theory quantum groups which are related to Tannaka–Krein reconstruction problem. show that every concrete semisimple tensor *-category with conjugates is equivalent category finite-dimensional nondegenerate *-representations discrete algebraic group. Working in self-dual framework groups, we then relate this earlier results S. L. Woronowicz and Yamagami. establish relation between braidings R-matrices context. Our approach emphasizes role natural transformations embedding functor. Thanks semisimplicity our categories emphasis on representations rather than corepresentations, proof more direct conceptual previous reconstructions. As special case, reprove classical result for compact groups. It only here analytic enter, otherwise proceed purely way. In particular, existence Haar functional reduced well-known general concerning multiplier Hopf *-algebras.

参考文章(36)
A Borsic, W Lionheart, N Polydorides, The reconstruction problem In: Electrical Impedance Tomography: Methods, History and Applications. Bristol: Institute of Physics; 2005. p. 3-64.. pp. 3- 64 ,(2005)
Konrad Schmüdgen, Anatoli Klimyk, Quantum Groups and Their Representations ,(2011)
Jean-Marie Schwartz, Alain Connes, Michel Enock, Adrian Ocneanu, Kac Algebras and Duality of Locally Compact Groups ,(1992)
Alfons Van Daele, The Haar measure on some locally compact quantum groups arXiv: Operator Algebras. ,(2001)
Johan Kustermans, Examining the dual of an algebraic quantum group arXiv: Functional Analysis. ,(1997)
Sergio Doplicher, John E. Roberts, A new duality theory for compact groups Inventiones Mathematicae. ,vol. 98, pp. 157- 218 ,(1989) , 10.1007/BF01388849
J. Kustermans, A. van Daele, C^*-algebraic quantum groups arising from algebraic quantum groups International Journal of Mathematics. ,vol. 08, pp. 1067- 1139 ,(1997) , 10.1142/S0129167X97000500
J KUSTERMANS, S VAES, Locally compact quantum groups Annales Scientifiques De L Ecole Normale Superieure. ,vol. 33, pp. 837- 934 ,(2000) , 10.1016/S0012-9593(00)01055-7
A. Van Daele, Multiplier Hopf algebras Transactions of the American Mathematical Society. ,vol. 342, pp. 917- 932 ,(1994) , 10.1090/S0002-9947-1994-1220906-5