Examining the dual of an algebraic quantum group

作者: Johan Kustermans

DOI:

关键词:

摘要: In the first part of this paper, we implement multiplier algebra dual an algebraic quantum group (A,Delta) as a space linear functionals on A. second part, construct universal corepresentation and use it to prove bijective correspondence between corepresentations homomorphisms dual.

参考文章(12)
S. L. Woronowicz, Pseudospaces, pseudogroups and pontriagin duality Mathematical Problems in Theoretical Physics. ,vol. 116, pp. 407- 412 ,(1980) , 10.1007/3-540-09964-6_354
Bernhard Drabant, Alfons Van Daele, Pairing and Quantum Double of Multiplier Hopf Algebras Algebras and Representation Theory. ,vol. 4, pp. 109- 132 ,(2001) , 10.1023/A:1011470032416
Jean-Marie Schwartz, Alain Connes, Michel Enock, Adrian Ocneanu, Kac Algebras and Duality of Locally Compact Groups ,(1992)
Johan Kustermans, Universal C*-algebraic quantum groups arising from algebraic quantum groups arXiv: Functional Analysis. ,(1997)
J. Kustermans, A. van Daele, C^*-algebraic quantum groups arising from algebraic quantum groups International Journal of Mathematics. ,vol. 08, pp. 1067- 1139 ,(1997) , 10.1142/S0129167X97000500
ELLIOT C. GOOTMAN, ALDO J. LAZAR, QUANTUM GROUPS AND DUALITY Reviews in Mathematical Physics. ,vol. 05, pp. 417- 451 ,(1993) , 10.1142/S0129055X93000115
A. Van Daele, Multiplier Hopf algebras Transactions of the American Mathematical Society. ,vol. 342, pp. 917- 932 ,(1994) , 10.1090/S0002-9947-1994-1220906-5
EDWARD G. EFFROS, ZHONG-JIN RUAN, DISCRETE QUANTUM GROUPS I: THE HAAR MEASURE International Journal of Mathematics. ,vol. 05, pp. 681- 723 ,(1994) , 10.1142/S0129167X94000358
S. L. Woronowicz, Compact matrix pseudogroups Communications in Mathematical Physics. ,vol. 111, pp. 613- 665 ,(1987) , 10.1007/BF01219077
Tom H. Koornwinder, Mathijs S. Dijkhuizen, CQG algebras: a direct algebraic approach to compact quantum groups Letters in Mathematical Physics. ,vol. 32, pp. 315- 330 ,(1994) , 10.1007/BF00761142