Laser-Induced Growth of Microstructures

作者: Y. Pauleau , G. Auvert

DOI: 10.1007/978-3-642-71446-7_9

关键词:

摘要: In the field of microelectronic devices, laser-induced processes are currently under investigation for various applications such as wafer marking, substrate cleaning, doping, oxidation, etching, deposition thin films, exposure or removal photoresists and recrystallization silicon on insulators [1]. Laser irradiation reactant gases can generate activated species surface localized growth microstructures be achieved by focusing a laser beam absorbing substrates. Owing to small diameters high energy densities (fluences), very reaction rates obtained. The spot positioned automatically moved over making one step fabrication possible. This “direct writing” technique is promising establish new interconnection networks in very-large scale integrated (VLSI) circuits through chemical vapor (LCVD) etching. With processes, semiconductor devices have been fabricated without using masks [2]. processing way obtaining precision required industry with micron submicron sizes. Review papers published laser-generated [3] well CVD [4–7] laser-microchemical VLSI [8–12].

参考文章(18)
Y. Pauleau, D. Tonneau, G. Auvert, Deposition of Silicon Films by Photodissociation of Silane Under IR Laser Irradiation Springer Series in Chemical Physics. pp. 215- 220 ,(1984) , 10.1007/978-3-642-82381-7_28
D. J. Ehrlich, R. M. Osgood, T. F. Deutsch, Laser microreaction for deposition of doped silicon films Applied Physics Letters. ,vol. 39, pp. 957- 959 ,(1981) , 10.1063/1.92624
R. Bilenchi, I. Gianinoni, M. Musci, Hydrogenated amorphous silicon growth by CO2 laser photodissociation of silane Journal of Applied Physics. ,vol. 53, pp. 6479- 6481 ,(1982) , 10.1063/1.331494
DJ Ehrlich, JY Tsao, A review of laser–microchemical processing Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures. ,vol. 1, pp. 969- 984 ,(1983) , 10.1116/1.582718
Renzo Bilenchi, Iva Gianinoni, Mirella Musci, Roberto Murri, Laser Induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon MRS Proceedings. ,vol. 17, pp. 199- ,(1982) , 10.1557/PROC-17-199
C. P. Christensen, K. M. Lakin, Chemical vapor deposition of silicon using a CO2laser Applied Physics Letters. ,vol. 32, pp. 254- 256 ,(1978) , 10.1063/1.90010
D. J. Ehrlich, R. M. Osgood, T. F. Deutsch, Photodeposition of metal films with ultraviolet laser light Journal of Vacuum Science and Technology. ,vol. 21, pp. 23- 32 ,(1982) , 10.1116/1.571724
M. Lax, Temperature rise induced by a laser beam Journal of Applied Physics. ,vol. 48, pp. 3919- 3924 ,(1977) , 10.1063/1.324265
R. S. Hawke, Fusion fuel pellet injection with a railgun Journal of Vacuum Science and Technology. ,vol. 1, pp. 969- 973 ,(1983) , 10.1116/1.572164
Bruce M. McWilliams, Irving P. Herman, Fred Mitlitsky, Roderick A. Hyde, Lowell L. Wood, Wafer‐scale laser pantography: Fabrication ofn‐metal‐oxide‐semiconductor transistors and small‐scale integrated circuits by direct‐write laser‐induced pyrolytic reactions Applied Physics Letters. ,vol. 43, pp. 946- 948 ,(1983) , 10.1063/1.94191