A Review of Automated Methods for Detection of Myocardial Ischemia and Infarction Using Electrocardiogram and Electronic Health Records

作者: Sardar Ansari , Negar Farzaneh , Marlena Duda , Kelsey Horan , Hedvig B. Andersson

DOI: 10.1109/RBME.2017.2757953

关键词:

摘要: There is a growing body of research focusing on automatic detection ischemia and myocardial infarction (MI) using computer algorithms. In clinical settings, MI are diagnosed electrocardiogram (ECG) recordings as well medical context including patient symptoms, history, risk factors—information that often stored in the electronic health records. The ECG signal inspected to identify changes morphology such ST-segment deviation T-wave changes. Some proposed methods compute similar features automatically while others use nonconventional wavelet coefficients. This review provides an overview have been this area, their historical evolution, publicly available datasets they used evaluate performance, details algorithms for EHR analysis. validation strategies performance also presented. Finally, paper recommendations future address shortcomings currently existing practical considerations make technical solutions applicable practice.

参考文章(243)
Stefan Agewall, John F. Beltrame, Harmony R. Reynolds, Alexander Niessner, Giuseppe Rosano, Alida L. P. Caforio, Raffaele De Caterina, Marco Zimarino, Marco Roffi, Keld Kjeldsen, Dan Atar, Juan C. Kaski, Udo Sechtem, Per Tornvall, ESC Working Group Position Paper on Myocardial Infarction With Non-Obstructive Coronary Arteries European Heart Journal. ,vol. 38, pp. 143- 153 ,(2016) , 10.1093/EURHEARTJ/EHW149
Peng Xiong, Hongrui Wang, Ming Liu, Suiping Zhou, Zengguang Hou, Xiuling Liu, ECG signal enhancement based on improved denoising auto-encoder Engineering Applications of Artificial Intelligence. ,vol. 52, pp. 194- 202 ,(2016) , 10.1016/J.ENGAPPAI.2016.02.015
Selker Hp, Griffith Jl, D'Agostino Rb, Patil S, Long Wj, A comparison of performance of mathematical predictive methods for medical diagnosis: identifying acute cardiac ischemia among emergency department patients. Journal of Investigative Medicine. ,vol. 43, pp. 468- 476 ,(1995)
Abdul Jaleel, Reza Tafreshi, Leyla Tafreshi, An Expert System for Differential Diagnosis of Myocardial Infarction Journal of Dynamic Systems Measurement and Control-transactions of The Asme. ,vol. 138, pp. 111012- ,(2016) , 10.1115/1.4033838
Mandeep Singh, Amit Kumar Manocha, An Overview of Ischemia Detection Techniques ,(2011)
Daniel Romero, Juan Pablo Martínez, Pablo Laguna, Esther Pueyo, Ischemia detection from morphological QRS angle changes. Physiological Measurement. ,vol. 37, pp. 1004- 1023 ,(2016) , 10.1088/0967-3334/37/7/1004
Pedro Arini, Lorena Correa, Max Valentinuzzi, Eric Laciar, Raúl Correa, Identification of Patients with Myocardial Infarction. Vectorcardiographic and Electrocardiographic Analysis. Methods of Information in Medicine. ,vol. 55, pp. 242- 249 ,(2016) , 10.3414/ME15-01-0101
R.S. Remya, K.P. Indiradevi, K.K. Anish Babu, Classification of Myocardial Infarction Using Multi Resolution Wavelet Analysis of ECG Procedia Technology. ,vol. 24, pp. 949- 956 ,(2016) , 10.1016/J.PROTCY.2016.05.195
Sardar Ansari, Ashwin Belle, Hamid Ghanbari, Mark Salamango, Kayvan Najarian, Suppression of false arrhythmia alarms in the ICU: a machine learning approach. Physiological Measurement. ,vol. 37, pp. 1186- 1203 ,(2016) , 10.1088/0967-3334/37/8/1186