Myocardial Infarction Detection Based on Multi-lead Ensemble Neural Network

作者: H.M. Wang , W. Zhao , D.Y. Jia , J. Hu , Z.Q. Li

DOI: 10.1109/EMBC.2019.8856392

关键词:

摘要: Automatic myocardial infarction (MI) detection using an electrocardiogram (ECG) is of great significance for improving the survival rate patients. In this study, we propose a multi-lead ensemble neural network (MENN) to distinguish anterior (AMI) and inferior (IMI) from healthy control (HC) respectively. three kinds sub-networks ECG signals are combined, which fully explores information improves classification performance. The algorithm evaluated on PTB database by 5-fold inter-subject cross-validation sensitivity (Se), specificity (Sp) area under curve (AUC) AMI 98.35%, 97.49%, 97.92%; Se, Sp, AUC IMI 93.17%, 92.02%, 92.60%. proposed method achieves state art results both tasks outperforms baseline methods. Hence, potential automatic MI diagnosis.

参考文章(13)
Shuicheng Yan, Qiang Chen, Min Lin, Network In Network arXiv: Neural and Evolutionary Computing. ,(2013)
Li Sun, Yanping Lu, Kaitao Yang, Shaozi Li, ECG Analysis Using Multiple Instance Learning for Myocardial Infarction Detection IEEE Transactions on Biomedical Engineering. ,vol. 59, pp. 3348- 3356 ,(2012) , 10.1109/TBME.2012.2213597
M Sai Praneeth, Xudong Peng, Alice Li, Shahrzad Hosseini Vajargah, Going deeper with convolutions computer vision and pattern recognition. pp. 1- 9 ,(2015) , 10.1109/CVPR.2015.7298594
Jiapu Pan, Willis J. Tompkins, A Real-Time QRS Detection Algorithm IEEE Transactions on Biomedical Engineering. ,vol. BME-32, pp. 230- 236 ,(1985) , 10.1109/TBME.1985.325532
L Glass, JM Hausdorff, PC Ivanov, RG Mark, JE Mietus, GB Moody, CK Peng, HE Stanley, PhysioBank, PhysioToolkit, and PhysioNet Components of a New Research Resource for Complex Physiologic Signals Circulation. ,vol. 101, pp. 215- 220 ,(2000) , 10.1161/01.CIR.101.23.E215
Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep Residual Learning for Image Recognition computer vision and pattern recognition. pp. 770- 778 ,(2016) , 10.1109/CVPR.2016.90
U. Rajendra Acharya, Hamido Fujita, Vidya K. Sudarshan, Shu Lih Oh, Muhammad Adam, Joel E.W. Koh, Jen Hong Tan, Dhanjoo N. Ghista, Roshan Joy Martis, Chua K. Chua, Chua Kok Poo, Ru San Tan, Automated detection and localization of myocardial infarction using electrocardiogram Knowledge Based Systems. ,vol. 99, pp. 146- 156 ,(2016) , 10.1016/J.KNOSYS.2016.01.040
Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, Kaiming He, Aggregated Residual Transformations for Deep Neural Networks 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 5987- 5995 ,(2017) , 10.1109/CVPR.2017.634
U. Rajendra Acharya, Hamido Fujita, Shu Lih Oh, Yuki Hagiwara, Jen Hong Tan, Muhammad Adam, Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals Information Sciences. ,vol. 415, pp. 190- 198 ,(2017) , 10.1016/J.INS.2017.06.027
Sardar Ansari, Negar Farzaneh, Marlena Duda, Kelsey Horan, Hedvig B. Andersson, Zachary D. Goldberger, Brahmajee K. Nallamothu, Kayvan Najarian, A Review of Automated Methods for Detection of Myocardial Ischemia and Infarction Using Electrocardiogram and Electronic Health Records IEEE Reviews in Biomedical Engineering. ,vol. 10, pp. 264- 298 ,(2017) , 10.1109/RBME.2017.2757953