Unitary Proof of the Second Law of Thermodynamics

作者: Takahiro Sagawa

DOI: 10.1007/978-4-431-54168-4_5

关键词:

摘要: In this chapter, we review how to derive the second law of thermodynamics for systems that obey quantum mechanics at microscopic level. Starting with statement law, it based on statistical [1, 2, 3, 4, 5]. We formulate theory such total system thermodynamic and heat baths unitary evolution, assume initial states are in canonical distribution. Mathematically, our derivation is Klein inequality (or equivalently, positivity relative entropy). The reason why can be derived from reversible evolution due fact select distributions as states.

参考文章(9)
Myron Kaufman, Principles of Thermodynamics CRC Press. ,(2002) , 10.1201/9780203909768
Michele Campisi, Peter Talkner, Peter Hänggi, Fluctuation Theorem for Arbitrary Open Quantum Systems Physical Review Letters. ,vol. 102, pp. 210401- 210401 ,(2009) , 10.1103/PHYSREVLETT.102.210401
Herbert B. Callen, H. L. Scott, Thermodynamics and an Introduction to Thermostatistics, 2nd ed. American Journal of Physics. ,vol. 66, pp. 164- 167 ,(1998) , 10.1119/1.19071
Laszlo Tisza, Paul M Quay, THE STATISTICAL THERMODYNAMICS OF EQUILIBRIUM Annals of Physics. ,vol. 25, pp. 48- 90 ,(1963) , 10.1016/0003-4916(63)90334-8
Christopher Jarzynski, Daniel K. Wójcik, Classical and quantum fluctuation theorems for heat exchange. Physical Review Letters. ,vol. 92, pp. 230602- ,(2004) , 10.1103/PHYSREVLETT.92.230602
Elliott H. Lieb, Jakob Yngvason, The physics and mathematics of the second law of thermodynamics Physics Reports. ,vol. 310, pp. 1- 96 ,(1999) , 10.1016/S0370-1573(98)00082-9
Elliott H. Lieb, Jakob Yngvason, The Physics and Mathematics of the Second Law of Thermodynamics arXiv: Soft Condensed Matter. ,(1997) , 10.1016/S0370-1573(98)00082-9