Estimating the Attack Ratio of Dengue Epidemics under Time-varying Force of Infection using Aggregated Notification Data

作者: Flavio Coelho , Luiz Max Carvalho

DOI:

关键词:

摘要: Quantifying the attack ratio of disease is key to epidemiological inference and Public Health planning. For multi-serotype pathogens, however, different levels serotype-specific immunity make it difficult assess population at risk. In this paper we propose a Bayesian method for estimation an epidemic initial fraction susceptibles using aggregated incidence data. We derive probability distribution effective reproductive number, R t , use MCMC obtain posterior distributions parameters single-strain SIR transmission model with time-varying force infection. Our showcased in data set consisting 18 years dengue city Rio de Janeiro, Brazil. demonstrate that possible learn about even absence serotype specific On other hand, information provided by approach limited, stressing need detailed serological surveys characterise population.

参考文章(18)
Ottar N. Bjørnstad, Bärbel F. Finkenstädt, Bryan T. Grenfell, Dynamics of measles epidemics: Estimating scaling of transmission rates using a time series sir model Ecological Monographs. ,vol. 72, pp. 169- 184 ,(2002) , 10.1890/0012-9615(2002)072[0169:DOMEES]2.0.CO;2
Hiroshi Nishiura, Gerardo Chowell, Hans Heesterbeek, Jacco Wallinga, The ideal reporting interval for an epidemic to objectively interpret the epidemiological time course Journal of the Royal Society Interface. ,vol. 7, pp. 297- 307 ,(2010) , 10.1098/RSIF.2009.0153
Gleicy Amorim Macedo, Josélio Maria Galvão de Araújo, Hermann Gonçalves Schatzmayr, Filipe Anibal Carvalho Costa, Ana Maria Bispo de Filippis, Flávia Barreto dos Santos, Rita Maria Ribeiro Nogueira, Virological surveillance for early warning of dengue epidemics in the State of Rio de Janeiro, Brazil Transactions of The Royal Society of Tropical Medicine and Hygiene. ,vol. 107, pp. 141- 146 ,(2013) , 10.1093/TRSTMH/TRS091
Nicolas Bacaër, M. Gabriela M. Gomes, On the final size of epidemics with seasonality. Bulletin of Mathematical Biology. ,vol. 71, pp. 1954- 1966 ,(2009) , 10.1007/S11538-009-9433-7
Edwin B. Wilson, Probable Inference, the Law of Succession, and Statistical Inference Journal of the American Statistical Association. ,vol. 22, pp. 209- 212 ,(1927) , 10.1080/01621459.1927.10502953
P. M. Luz, B. Grinsztejn, A. P. Galvani, Disability adjusted life years lost to dengue in Brazil. Tropical Medicine & International Health. ,vol. 14, pp. 237- 246 ,(2009) , 10.1111/J.1365-3156.2008.02203.X
Maria G Guzman, Scott B Halstead, Harvey Artsob, Philippe Buchy, Jeremy Farrar, Duane J Gubler, Elizabeth Hunsperger, Axel Kroeger, Harold S Margolis, Eric Martínez, Michael B Nathan, Jose Luis Pelegrino, Cameron Simmons, Sutee Yoksan, Rosanna W Peeling, None, Dengue: a continuing global threat Nature Reviews Microbiology. ,vol. 8, pp. S7- S16 ,(2010) , 10.1038/NRMICRO2460
Flavio Codeço Coelho, Claudia Torres Codeço, M Gabriela M Gomes, None, A Bayesian Framework for Parameter Estimation in Dynamical Models PLoS ONE. ,vol. 6, pp. e19616- 6 ,(2011) , 10.1371/JOURNAL.PONE.0019616
Heloisa Helena Pelluci Duarte, Elisabeth Barboza França, [Data quality of dengue epidemiological surveillance in Belo Horizonte, Southeastern Brazil]. Revista De Saude Publica. ,vol. 40, pp. 134- 142 ,(2006) , 10.1590/S0034-89102006000100021
J. Wallinga, P. Teunis, M. Kretzschmar, Reconstruction of measles dynamics in a vaccinated population Vaccine. ,vol. 21, pp. 2643- 2650 ,(2003) , 10.1016/S0264-410X(03)00051-3