Probability distributions of linear statistics in chaotic cavities and associated phase transitions

作者: Pierpaolo Vivo , Satya N. Majumdar , Oriol Bohigas

DOI: 10.1103/PHYSREVB.81.104202

关键词:

摘要: We establish large deviation formulas for linear statistics on the $N$ transmission eigenvalues ${{T}_{i}}$ of a chaotic cavity, in framework random matrix theory. Given any interest $A={\ensuremath{\sum}}_{i=1}^{N}a({T}_{i})$, probability distribution ${\mathcal{P}}_{A}(A,N)$ $A$ generically satisfies formula ${\text{lim}}_{N\ensuremath{\rightarrow}\ensuremath{\infty}}[\ensuremath{-}2\text{ }\text{log}\text{ }{\mathcal{P}}_{A}(Nx,N)/\ensuremath{\beta}{N}^{2}]={\ensuremath{\Psi}}_{A}(x)$, where ${\ensuremath{\Psi}}_{A}(x)$ is rate function that we compute explicitly many cases (conductance, shot noise, and moments) $\ensuremath{\beta}$ corresponds to different symmetry classes. Using these expressions, it possible recover easily known results produce new formulas, such as closed form expression $v(n)={\text{lim}}_{N\ensuremath{\rightarrow}\ensuremath{\infty}}\text{ }\text{var}({\mathcal{T}}_{n})$ (where ${\mathcal{T}}_{n}={\ensuremath{\sum}}_{i}{T}_{i}^{n}$) arbitrary integer $n$. The universal limit ${v}^{\ensuremath{\star}}={\text{lim}}_{n\ensuremath{\rightarrow}\ensuremath{\infty}}\text{ }v(n)=1/2\ensuremath{\pi}\ensuremath{\beta}$ also computed exactly. distributions display central Gaussian region flanked both sides by non-Gaussian tails. At junction two regimes, weakly nonanalytical points appear, direct consequence phase transitions an associated Coulomb gas problem. Numerical checks are provided, which full agreement with our asymptotic real Laplace space even moderately small $N$. Part have been announced Vivo et al. [Phys. Rev. Lett. 101, 216809 (2008)].

参考文章(78)
G. B. Lesovik, L. S. Levitov, Charge distribution in quantum shot noise Jetp Letters. ,vol. 58, pp. 230- 235 ,(1993)
Holger Schanz, Mathias Puhlmann, Theo Geisel, Shot noise in chaotic cavities from action correlations. Physical Review Letters. ,vol. 91, pp. 134101- 134101 ,(2003) , 10.1103/PHYSREVLETT.91.134101
Victor A Gopar, KA Muttalib, Peter Wölfle, Conductance distribution in disordered quantum wires: Crossover between the metallic and insulating regimes Physical Review B. ,vol. 66, pp. 174204- ,(2002) , 10.1103/PHYSREVB.66.174204
LS Froufe-Pérez, P García-Mochales, PA Serena, PA Mello, JJ Sáenz, None, Conductance distributions in quasi-one-dimensional disordered wires. Physical Review Letters. ,vol. 89, pp. 246403- ,(2002) , 10.1103/PHYSREVLETT.89.246403
H. David Politzer, Random-matrix description of the distribution of mesoscopic conductance. Physical Review B. ,vol. 40, pp. 11917- 11919 ,(1989) , 10.1103/PHYSREVB.40.11917
A. Cresti, R. Farchioni, G. Grosso, Conductance distributions at the metal-insulator crossover in quasi 1-D pseudorandom wires European Physical Journal B. ,vol. 46, pp. 133- 138 ,(2005) , 10.1140/EPJB/E2005-00239-7
Wei Lu, Zhongqing Ji, Loren Pfeiffer, K. W. West, A. J. Rimberg, Real-time detection of electron tunnelling in a quantum dot Nature. ,vol. 423, pp. 422- 425 ,(2003) , 10.1038/NATURE01642
R. Schleser, E. Ruh, T. Ihn, K. Ensslin, D. C. Driscoll, A. C. Gossard, Time-resolved detection of individual electrons in a quantum dot Applied Physics Letters. ,vol. 85, pp. 2005- 2007 ,(2004) , 10.1063/1.1784875