PHAISTOS: A framework for Markov chain Monte Carlo simulation and inference of protein structure

作者: Wouter Boomsma , Jes Frellsen , Tim Harder , Sandro Bottaro , Kristoffer E. Johansson

DOI: 10.1002/JCC.23292

关键词:

摘要: We present a new software framework for Markov chain Monte Carlo sampling simulation, prediction, and inference of protein structure. The package contains implementations recent advances in methodology, such as efficient local updates from probabilistic models These form alternative to the widely used fragment rotamer libraries. Combined with an easily extendible architecture, this makes PHAISTOS well suited Bayesian structure sequence and/or experimental data. Currently, two force-fields are available within framework: PROFASI OPLS-AA/L, latter including generalized Born surface area solvent model. A flexible command-line configuration-file interface allows users quickly set up simulations desired configuration. is released under GNU General Public License v3.0. Source code documentation freely http://phaistos.sourceforge.net. implemented C++ has been tested on Linux OSX platforms. © 2013 Wiley Periodicals, Inc.

参考文章(44)
Andreas Vitalis, Rohit V. Pappu, Chapter 3 Methods for Monte Carlo Simulations of Biomacromolecules Annual Reports in Computational Chemistry. ,vol. 5, pp. 49- 76 ,(2009) , 10.1016/S1574-1400(09)00503-9
W. L. Delano, The PyMOL Molecular Graphics System DeLano Scientific. ,(2002)
Berk Hess, Carsten Kutzner, David van der Spoel, Erik Lindahl, GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation Journal of Chemical Theory and Computation. ,vol. 4, pp. 435- 447 ,(2008) , 10.1021/CT700301Q
Bobby Hesselbo, R. B. Stinchcombe, Monte Carlo simulation and global optimization without parameters. Physical Review Letters. ,vol. 74, pp. 2151- 2155 ,(1995) , 10.1103/PHYSREVLETT.74.2151
A. Cavalli, X. Salvatella, C. M. Dobson, M. Vendruscolo, Protein structure determination from NMR chemical shifts. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 104, pp. 9615- 9620 ,(2007) , 10.1073/PNAS.0610313104
Kasper Stovgaard, Christian Andreetta, Jesper Ferkinghoff-Borg, Thomas Hamelryck, Calculation of accurate small angle X-ray scattering curves from coarse-grained protein models BMC Bioinformatics. ,vol. 11, pp. 429- 429 ,(2010) , 10.1186/1471-2105-11-429
Michael Habeck, Michael Nilges, Wolfgang Rieping, Replica-exchange Monte Carlo scheme for bayesian data analysis. Physical Review Letters. ,vol. 94, pp. 018105- 018105 ,(2005) , 10.1103/PHYSREVLETT.94.018105
Ulrich H. E. Hansmann, Yuko Okamoto, Numerical Comparisons of Three Recently Proposed Algorithms in the Protein Folding Problem Journal of Computational Chemistry. ,vol. 18, pp. 920- 933 ,(1997) , 10.1002/(SICI)1096-987X(199705)18:7<920::AID-JCC5>3.0.CO;2-T
Teresa Przytycka, Significance of conformational biases in Monte Carlo simulations of protein folding: Lessons from Metropolis-Hastings approach Proteins: Structure, Function, and Bioinformatics. ,vol. 57, pp. 338- 344 ,(2004) , 10.1002/PROT.20210