Tree-depth, subgraph coloring and homomorphism bounds

作者: Jaroslav Nešetřil , Patrice Ossona de Mendez

DOI: 10.1016/J.EJC.2005.01.010

关键词:

摘要: We define the notions tree-depth and upper chromatic number of a graph show their relevance to local-global problems for partitions. In particular we that coincides with maximal function which can be locally demanded in bounded coloring any proper minor closed class graphs. The rich interplay these is applied solution bounds classes satisfying local conditions. particular, prove following result:For every M finite set F connected graphs there exists (universal) U = U(M, F) ∈ Forbh(F) such G does not have as satisfies → (i.e. homomorphic U).This solves main open problem restricted dualities an application it yields exact odd powers arbitrary class. also generalize decomposition theorem DeVos et al. [M. DeVos, G. Ding, B. Oporowski, D.P. Sanders, Reed, P. Seymour, D. Vertigan, Excluding allows low tree-width 2-coloring, J. Combin. Theory Ser. B 91 (2004) 25-41].

参考文章(19)
B. A. Reed, Algorithmic Aspects of Tree Width Recent Advances in Algorithms and Combinatorics. pp. 85- 107 ,(2003) , 10.1007/0-387-22444-0_4
Jaroslav Nešetřil, Pavol Hell, Graphs and homomorphisms ,(2004)
Jaroslav Nešetřil, Patrice Ossona de Mendez, Colorings and Homomorphisms of Minor Closed Classes Algorithms and Combinatorics. pp. 651- 664 ,(2003) , 10.1007/978-3-642-55566-4_29
Jaroslav Nesetril, Jiri Matousek, Invitation to discrete mathematics ,(1998)
O.V. Borodin, On acyclic colorings of planar graphs Discrete Mathematics. ,vol. 306, pp. 953- 972 ,(2006) , 10.1016/J.DISC.2006.03.017
Jaroslav Nešetřil, Claude Tardif, Duality Theorems for Finite Structures (Characterising Gaps and Good Characterisations) Journal of Combinatorial Theory, Series B. ,vol. 80, pp. 80- 97 ,(2000) , 10.1006/JCTB.2000.1970
Roland Häggkvist, Pavol Hell, Universality of A-mote Graphs The Journal of Combinatorics. ,vol. 14, pp. 23- 27 ,(1993) , 10.1006/EUJC.1993.1004
Béla Bollobás, Modern graph theory ,(1998)
Noga Alon, Colin Mcdiarmid, Bruce Reed, Acyclic coloring of graphs Random Structures and Algorithms. ,vol. 2, pp. 277- 288 ,(1991) , 10.1002/RSA.3240020303
H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, T. Kloks, Approximating treewidth, pathwidth, frontsize, and shortest elimination tree Journal of Algorithms. ,vol. 18, pp. 238- 255 ,(1995) , 10.1006/JAGM.1995.1009