Real-time prediction learning for the simultaneous actuation of multiple prosthetic joints

作者: Patrick M. Pilarski , Travis B. Dick , Richard S. Sutton

DOI: 10.1109/ICORR.2013.6650435

关键词:

摘要: Integrating learned predictions into a prosthetic control system promises to enhance multi-joint prosthesis use by amputees. In this article, we present preliminary study of different cases where it may be beneficial set temporally extended - and maintained in real time within an engineered or controller. Our demonstrates the first successful combination actor-critic reinforcement learning with real-time prediction learning. We evaluate new approach during myoelectric operation robot limb. results suggest that integration speed policy acquisition, allow unsupervised adaptation controllers, facilitate synergies highly actuated limbs. These experiments also show enables anticipatory actuation, opening way for coordinated motion assistive robotic devices. work therefore provides initial evidence realtime is practical support intuitive joint increasingly complex systems.

参考文章(33)
Richard S. Sutton, Eddie J. Rafols, Brian Tanner, Mark B. Ring, Using predictive representations to improve generalization in reinforcement learning international joint conference on artificial intelligence. pp. 835- 840 ,(2005)
Gregory A. Dumanian, Jason H. Ko, Kristina D. O’Shaughnessy, Peter S. Kim, Christopher J. Wilson, Todd A. Kuiken, Targeted reinnervation for transhumeral amputees: Current surgical technique and update on results Plastic and Reconstructive Surgery. ,vol. 124, pp. 863- 869 ,(2009) , 10.1097/PRS.0B013E3181B038C9
V. Mathiowetz, G. Volland, N. Kashman, K. Weber, Adult norms for the Box and Block Test of manual dexterity American Journal of Occupational Therapy. ,vol. 39, pp. 386- 391 ,(1985) , 10.5014/AJOT.39.6.386
Patrick M. Pilarski, Michael R. Dawson, Thomas Degris, Jason P. Carey, Richard S. Sutton, Dynamic switching and real-time machine learning for improved human control of assistive biomedical robots ieee international conference on biomedical robotics and biomechatronics. pp. 296- 302 ,(2012) , 10.1109/BIOROB.2012.6290309
Ngo Anh Vien, Wolfgang Ertel, Tae Choong Chung, Learning via human feedback in continuous state and action spaces Applied Intelligence. ,vol. 39, pp. 267- 278 ,(2013) , 10.1007/S10489-012-0412-6
Christopher L. Pulliam, Joris M. Lambrecht, Robert F. Kirsch, Electromyogram-based neural network control of transhumeral prostheses Journal of Rehabilitation Research and Development. ,vol. 48, pp. 739- 754 ,(2011) , 10.1682/JRRD.2010.12.0237
Katharina Mülling, Jens Kober, Oliver Kroemer, Jan Peters, Learning to select and generalize striking movements in robot table tennis The International Journal of Robotics Research. ,vol. 32, pp. 263- 279 ,(2013) , 10.1177/0278364912472380
T. Degris, P. M. Pilarski, R. S. Sutton, Model-Free reinforcement learning with continuous action in practice advances in computing and communications. pp. 2177- 2182 ,(2012) , 10.1109/ACC.2012.6315022
Linda Resnik, Marissa R. Meucci, Shana Lieberman-Klinger, Christopher Fantini, Debra L. Kelty, Roxanne Disla, Nicole Sasson, Advanced Upper Limb Prosthetic Devices: Implications for Upper Limb Prosthetic Rehabilitation Archives of Physical Medicine and Rehabilitation. ,vol. 93, pp. 710- 717 ,(2012) , 10.1016/J.APMR.2011.11.010