作者: T. Degris , P. M. Pilarski , R. S. Sutton
关键词:
摘要: Reinforcement learning methods are often considered as a potential solution to enable a robot to adapt to changes in real time to an unpredictable environment. However, with continuous action, only a few existing algorithms are practical for real-time learning. In such a setting, most effective methods have used a parameterized policy structure, often with a separate parameterized value function. The goal of this paper is to assess such actor-critic methods to form a fully specified practical algorithm. Our specific contributions include 1) …