Mean-field solution of the continuum Fröhlich problem at finite temperature.

作者: A. A. Eremko

DOI: 10.1103/PHYSREVB.50.5160

关键词:

摘要: The temperature behavior of the charge-density-wave (CDW) state in one-dimensional conductors is studied within framework a mean-field approach using exact solution self-consistent equations. properties CDW condensate are found to be dependent on value dimensionless parameter which includes an electron-phonon coupling constant and density electrons. thermal shown similar that Bardeen-Cooper-Schrieffer (BCS) superconducting only at sufficiently weak or relatively high electron density. In case comparatively strong low density, correct consideration leads violation BCS relation between phase transition electronic gap [ital T]=0, also variation period, decreases with increasing temperature.

参考文章(13)
G. Grüner, The Dynamics of Charge Density Waves Reviews of Modern Physics. ,vol. 60, pp. 1129- 1181 ,(1988) , 10.1103/REVMODPHYS.60.1129
On the Theory of Superconductivity: The One-Dimensional Case Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 223, pp. 296- 305 ,(1954) , 10.1098/RSPA.1954.0116
B. Sriram Shastry, Exact solution of a nonlinear eigenvalue problem in one dimension Physical Review Letters. ,vol. 50, pp. 633- 636 ,(1983) , 10.1103/PHYSREVLETT.50.633
A. A. Eremko, Peierls-Fröhlich problem in the continuum approximation. Physical Review B. ,vol. 46, pp. 3721- 3728 ,(1992) , 10.1103/PHYSREVB.46.3721
P. A. Lee, T. M. Rice, P. W. Anderson, Fluctuation Effects at a Peierls Transition Physical Review Letters. ,vol. 31, pp. 462- 465 ,(1973) , 10.1103/PHYSREVLETT.31.462
M.J. Rice, S. Strässler, Effects of fluctuations and interchain coupling on the peierls transition Solid State Communications. ,vol. 13, pp. 1389- 1392 ,(1973) , 10.1016/0038-1098(73)90173-7
On the Thermal Properties of Frohlich's One-Dimensional Superconductor Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 227, pp. 214- 228 ,(1955) , 10.1098/RSPA.1955.0005
J. Sólyom, The Fermi gas model of one-dimensional conductors Advances in Physics. ,vol. 28, pp. 201- 303 ,(1979) , 10.1080/00018737900101375
Ross H. McKenzie, John W. Wilkins, Effect of lattice zero-point motion on electronic properties of the Peierls-Fröhlich state. Physical Review Letters. ,vol. 69, pp. 1085- 1088 ,(1992) , 10.1103/PHYSREVLETT.69.1085