Complexity spaces as quantitative domains of computation

作者: S. Romaguera , M.P. Schellekens , O. Valero

DOI: 10.1016/J.TOPOL.2011.01.005

关键词:

摘要: Abstract We study domain theoretic properties of complexity spaces. Although the so-called space is not a for usual pointwise order, we show that, however, each pointed an ω-continuous which quasi-metric induces Scott topology, and supremum metric Lawson topology. Hence, both quantifiable in sense M. Schellekens quantitative P. Waszkiewicz, via partial induced by quasi-metric.

参考文章(19)
Paweł Waszkiewicz, Quantitative Continuous Domains Applied Categorical Structures. ,vol. 11, pp. 41- 67 ,(2003) , 10.1023/A:1023012924892
Keye Martin, The Measurement Process in Domain Theory international colloquium on automata languages and programming. pp. 116- 126 ,(2000) , 10.1007/3-540-45022-X_11
Salvador Romaguera, M.P. Schellekens, Duality and quasi-normability for complexity spaces Applied general topology. ,vol. 3, pp. 91- 112 ,(2002) , 10.4995/AGT.2002.2116
K. Keimel, K. H. Hofmann, J. D. Lawson, M. W. Mislove, D. S. Scott, G. Gierz, Continuous Lattices and Domains ,(2003)
M. Schellekens, The Smyth Completion Electronic Notes in Theoretical Computer Science. ,vol. 1, pp. 535- 556 ,(1995) , 10.1016/S1571-0661(04)00029-5
Reinhold Heckmann, Approximation of Metric Spaces by Partial Metric Spaces Applied Categorical Structures. ,vol. 7, pp. 71- 83 ,(1999) , 10.1023/A:1008684018933
Jordi Llull-Chavarría, Oscar Valero, An Application of Generalized Complexity Spaces to Denotational Semantics via the Domain of Words Language and Automata Theory and Applications. pp. 530- 541 ,(2009) , 10.1007/978-3-642-00982-2_45
Abbas Edalat, Reinhold Heckmann, A computational model for metric spaces Theoretical Computer Science. ,vol. 193, pp. 53- 73 ,(1998) , 10.1016/S0304-3975(96)00243-5
M.P. Schellekens, A characterization of partial metrizability: domains are quantifiable Theoretical Computer Science. ,vol. 305, pp. 409- 432 ,(2003) , 10.1016/S0304-3975(02)00705-3
S. Romaguera, M. P. Schellekens, O. Valero, The complexity space of partial functions: a connection between complexity analysis and denotational semantics International Journal of Computer Mathematics. ,vol. 88, pp. 1819- 1829 ,(2011) , 10.1080/00207161003631885