Recursive computation of matrix elements in the numerical renormalization group

作者: José Wilson M. Pinto , Luiz N. Oliveira

DOI: 10.1016/J.CPC.2014.01.004

关键词:

摘要: The numerical renormalization group is an efficient method to diagonalize model Hamiltonians describing correlated orbitals coupled conduction states. While only the resulting eigenvalues are needed calculate thermodynamical properties for such models, matrix elements of Fermi operators must be evaluated before excitation and transport can computed. traditional procedure typically as expensive diagonalization Hamiltonian. Here, we present a substantially faster alternative that demands much less memory, yields equally accurate easier code.

参考文章(27)
M. Yoshida, A. C. Seridonio, L. N. Oliveira, Universal zero-bias conductance for the single-electron transistor web science. ,vol. 80, pp. 235317- ,(2009) , 10.1103/PHYSREVB.80.235317
P. W. Anderson, Localized Magnetic States in Metals Physical Review. ,vol. 124, pp. 41- 53 ,(1961) , 10.1103/PHYSREV.124.41
Ralf Bulla, Theo A. Costi, Thomas Pruschke, Numerical renormalization group method for quantum impurity systems Reviews of Modern Physics. ,vol. 80, pp. 395- 450 ,(2008) , 10.1103/REVMODPHYS.80.395
Vivaldo L. Campo, Luiz N. Oliveira, Alternative discretization in the numerical renormalization-group method Physical Review B. ,vol. 72, pp. 104432- ,(2005) , 10.1103/PHYSREVB.72.104432
T A Costi, A C Hewson, V Zlatic, Transport coefficients of the Anderson model via the numerical renormalization group Journal of Physics: Condensed Matter. ,vol. 6, pp. 2519- 2558 ,(1994) , 10.1088/0953-8984/6/13/013
M. Yoshida, M. A. Whitaker, L. N. Oliveira, Renormalization-group calculation of excitation properties for impurity models Physical Review B. ,vol. 41, pp. 9403- 9414 ,(1990) , 10.1103/PHYSREVB.41.9403
Alexander Cyril Hewson, The Kondo Problem to Heavy Fermions ,(1993)