Differential expression of microRNAs in cardiac myocytes compared to undifferentiated P19 cells

作者: Ling-Mei Qian

DOI: 10.3892/IJMM.2011.664

关键词:

摘要: microRNA (miRNA) expression is tightly controlled in a tissue-specific and developmental stage-specific manner; some are highly specifically expressed cardiovascular tissues. miRNA profiling, using microarrays facilitates studying the biological function of miRNAs. We investigated changes profiles during differentiation P19 cells into cardiac myocytes order to elucidate mechanisms heart development. The morphology was observed an inverted microscope. Western blot analysis performed detect troponin I (cTnI) expression. Total RNA extracted from for microarray real-time quantitative reverse transcription-polymerase chain reaction (real-time qRT-PCR) analyses determine profile. revealed differential 49 miRNAs, which 26 were down-regulated 23 up-regulated differentiated myocytes, compared normal cells. This confirmed by qRT-PCR. also utilized target prediction identify gene targets. Some miRNAs may have important roles development congenital defects (CHDs). Further confirm their genes will potential novel miRNA-based therapeutic strategies.

参考文章(24)
Wenyong Zhang, James E Dahlberg, Wayne Tam, None, MicroRNAs in Tumorigenesis : A Primer American Journal of Pathology. ,vol. 171, pp. 728- 738 ,(2007) , 10.2353/AJPATH.2007.070070
Gary Ruvkun, Brenda J. Reinhart, Frank J. Slack, Michael Basson, Amy E. Pasquinelli, Jill C. Bettinger, Ann E. Rougvie, H. Robert Horvitz, The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans Nature. ,vol. 403, pp. 901- 906 ,(2000) , 10.1038/35002607
Yunhui Cheng, Chunxiang Zhang, MicroRNA-21 in Cardiovascular Disease Journal of Cardiovascular Translational Research. ,vol. 3, pp. 251- 255 ,(2010) , 10.1007/S12265-010-9169-7
Xiaolian Gao, Erdogan Gulari, Xiaochuan Zhou, In situ synthesis of oligonucleotide microarrays Biopolymers. ,vol. 73, pp. 579- 596 ,(2004) , 10.1002/BIP.20005
J. Dresios, A. Aschrafi, G. C. Owens, P. W. Vanderklish, G. M. Edelman, V. P. Mauro, Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 102, pp. 1865- 1870 ,(2005) , 10.1073/PNAS.0409764102
George Adrian Calin, Ramiro Garzon, Amelia Cimmino, Muller Fabbri, Carlo Maria Croce, MicroRNAs and leukemias: how strong is the connection? Leukemia Research. ,vol. 30, pp. 653- 655 ,(2006) , 10.1016/J.LEUKRES.2005.10.017
Andrea Tanzer, Peter F Stadler, Molecular Evolution of a MicroRNA Cluster Journal of Molecular Biology. ,vol. 339, pp. 327- 335 ,(2004) , 10.1016/J.JMB.2004.03.065
C. Kwon, J. Arnold, E. C. Hsiao, M. M. Taketo, B. R. Conklin, D. Srivastava, Canonical Wnt signaling is a positive regulator of mammalian cardiac progenitors. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 104, pp. 10894- 10899 ,(2007) , 10.1073/PNAS.0704044104
Julien I.E Hoffman, Samuel Kaplan, The incidence of congenital heart disease Journal of the American College of Cardiology. ,vol. 39, pp. 1890- 1900 ,(2002) , 10.1016/S0735-1097(02)01886-7
Peizhang Xu, Stephanie Y. Vernooy, Ming Guo, Bruce A. Hay, The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism Current Biology. ,vol. 13, pp. 790- 795 ,(2003) , 10.1016/S0960-9822(03)00250-1