The Free and Forced Vibrations of a Closed Elastic Spherical Shell Fixed to an Equatorial Beam-Part II: Perturbation Approximations

作者: J. G. Simmonds , A. P. Hosseinbor

DOI: 10.1115/1.3197211

关键词:

摘要: The two small parameters that appear in the final equations developed Part I (Simmonds and Hosseinbor, 2010, "The Free Forced Vibrations of a Closed Elastic Spherical Shell Fixed to an Equatorial Beam—Part I: Governing Equations Special Solutions," ASME J. Appl. Mech., 77, p. 021017), namely, h/R, ratio constant shell thickness radius curvature shell's reference surface H/R, where H is depth (or width) equatorial beam, are exploited using perturbation techniques (including WKB method). natural frequencies depend not only on these parameters, but also mass densities Young moduli Poisson's ratio, circumferential wave number m. Short tables for typical parameter values given those cases frequency equation explicit.

参考文章(5)
Fritz Oberhettinger, Wilhelm Magnus, Raj Pal Soni, Formulas and Theorems for the Special Functions of Mathematical Physics ,(1966)
E. W. Ross, Natural Frequencies and Mode Shapes for Axisymmetric Vibration of Deep Spherical Shells Journal of Applied Mechanics. ,vol. 32, pp. 553- 561 ,(1965) , 10.1115/1.3627258
Frithiof I. Niordson, The spectrum of free vibrations of a thin elastic spherical shell International Journal of Solids and Structures. ,vol. 24, pp. 947- 961 ,(1988) , 10.1016/0020-7683(88)90043-1
J. Lyell Sanders, James G. Simmonds, James E. Mann, A First Look at Perturbation Theory ,(1986)