Modeling of Solute Transport with the Random Walk Method

作者: Gerard J. M. Uffink

DOI: 10.1007/978-94-009-2889-3_16

关键词:

摘要: Flow models for convective flow may be easily extended with a dispersive component by the random-walk method. The process is described Fokker-Planck equation. Comparison convection-dispersion equation shows an additional term in that depends on spatial derivative of dispersion coefficient. This usually small but dominates when groundwater itself approaches zero, as occurs e.g. near stagnation points. In situations rotational this significant transversal direction.

参考文章(14)
G. J. M. Uffink, A random walk method for the simulation of macrodispersion in a stratified aquifer IAHS-AISH publication. pp. 103- 114 ,(1985)
Thomas G. Naymik, Thomas A. Prickett, Carl G. Lonnquist, A "random-walk" solute transport model for selected groundwater quality evaluations Illinois State Water Survey. ,(1981)
S.W. Ahlstrom, H.P. Foote, R.C. Arnett, C.R. Cole, R.J. Serne, Multicomponent mass transport model: theory and numerical implementation (discrete-parcel-random-walk version) Office of Scientific and Technical Information (OSTI). ,(1977) , 10.2172/7083383
Otto D. L. Strack, Three-Dimensional Streamlines in Dupuit-Forchheimer Models Water Resources Research. ,vol. 20, pp. 812- 822 ,(1984) , 10.1029/WR020I007P00812
Leslie Smith, Franklin W. Schwartz, Mass transport: 1. A stochastic analysis of macroscopic dispersion Water Resources Research. ,vol. 16, pp. 303- 313 ,(1980) , 10.1029/WR016I002P00303
Adalbert Duschek, August Hochrainer, Grundzüge der Tensorrechnung in Analytischer Darstellung Springer Vienna. ,(1950) , 10.1007/978-3-7091-2070-5
N. G. Van Kampen, William P. Reinhardt, Stochastic processes in physics and chemistry ,(1981)
Hannes Risken, The Fokker-Planck equation ,(1984)