Modeling the Effect of Temperature on Membrane Response of Light Stimulation in Optogenetically-Targeted Neurons.

作者: Helton M. Peixoto , Rossana M. S. Cruz , Thiago C. Moulin , Richardson N. Leão

DOI: 10.3389/FNCOM.2020.00005

关键词:

摘要: Optogenetics is revolutionizing Neuroscience, but an often neglected effect of light stimulation the brain generation heat. In extreme cases, light-generated heat kills neurons, mild temperature changes alter neuronal function. To date, most in vivo experiments rely on neural tissue using fiber-coupled lasers various wavelengths. Brain irradiated with high power that can be deleterious to Furthermore, absorbed generates lead permanent damage and affect excitability. Thus, alone generate effects function are unrelated genuine "optogenetic effect." this work, we perform a theoretical analysis investigate transfer rodent for standard optogenetic protocols. More precisely, first use Kubelka-Munk model propagation observe absorption phenomenon. Then, optothermal considering common laser wavelengths (473 593 nm) used approaching time/space numerical solution Pennes' bio-heat equation Finite Element Method. Finally, then modeled channelrhodopsin-2 single spontaneous-firing neuron explore stimulated neurons. We found that, at commonly intensities, radiation considerably increases surrounding tissue. This alters action potential size shape causes increase spontaneous firing frequency model. However, shortening activation time constants generated by produces failures response stimulation. also spectrum density reduction required synchronization interneuron network gamma oscillations. Our findings indicate intensities may not only direct excitation sensitive ion channels and/or pumps generating approach serves as guide design minimize role heating experimental outcome.

参考文章(51)
Antoine Adamantidis, Silvia Arber, Jaideep S Bains, Ernst Bamberg, Antonello Bonci, György Buzsáki, Jessica A Cardin, Rui M Costa, Yang Dan, Yukiko Goda, Ann M Graybiel, Michael Häusser, Peter Hegemann, John R Huguenard, Thomas R Insel, Patricia H Janak, Daniel Johnston, Sheena A Josselyn, Christof Koch, Anatol C Kreitzer, Christian Lüscher, Robert C Malenka, Gero Miesenböck, Georg Nagel, Botond Roska, Mark J Schnitzer, Krishna V Shenoy, Ivan Soltesz, Scott M Sternson, Richard W Tsien, Roger Y Tsien, Gina G Turrigiano, Kay M Tye, Rachel I Wilson, Optogenetics: 10 years after ChR2 in neurons--views from the community. Nature Neuroscience. ,vol. 18, pp. 1202- 1212 ,(2015) , 10.1038/NN.4106
Xiao-Jing Wang, György Buzsáki, Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model The Journal of Neuroscience. ,vol. 16, pp. 6402- 6413 ,(1996) , 10.1523/JNEUROSCI.16-20-06402.1996
Matthew N. O. Sadiku, Elements of Electromagnetics ,(1989)
Bruce Walmsley, Katarina E. Leao, Richardson N. Leao, Hong Sun, Robert E. W. Fyffe, Hyperpolarization-activated currents are differentially expressed in mice brainstem auditory nuclei The Journal of Physiology. ,vol. 576, pp. 849- 864 ,(2006) , 10.1113/JPHYSIOL.2006.114702
Katarina E. Leão, Richardson N. Leão, Bruce Walmsley, Modulation of dendritic synaptic processing in the lateral superior olive by hyperpolarization-activated currents. European Journal of Neuroscience. ,vol. 33, pp. 1462- 1470 ,(2011) , 10.1111/J.1460-9568.2011.07627.X
Katarina Itrić, Vesna Džimbeg-Malčić, Željka Barbarić-Mikočević, KUBELKA-MUNK THEORY IN DESCRIBING OPTICAL PROPERTIES OF PAPER (II) Tehnicki Vjesnik-technical Gazette. ,vol. 18, pp. 117- 124 ,(2012)
Joseph M. Stujenske, Timothy Spellman, Joshua A. Gordon, Modeling the Spatiotemporal Dynamics of Light and Heat Propagation for In Vivo Optogenetics Cell Reports. ,vol. 12, pp. 525- 534 ,(2015) , 10.1016/J.CELREP.2015.06.036
Feng Zhang, Hsing-Chen Tsai, Raag D. Airan, Garret D. Stuber, Antoine R. Adamantidis, Luis de Lecea, Antonello Bonci, Karl Deisseroth, Optogenetics in Freely Moving Mammals: Dopamine and Reward CSH Protocols. ,vol. 2015, pp. 715- 724 ,(2015) , 10.1101/PDB.TOP086330