SPSLs and Dilute-Nitride Optoelectronic Devices

作者: Y Seyed Jalili

DOI: 10.5772/20749

关键词:

摘要: Currently the main concern in GaAs-based dilute nitride research is understanding of their material properties. There are many contradictory conclusions specially when it comes to origin luminescence efficiency these systems. different ideas have been put forward some more plausible than others. However there a lack new overcome differences. This chapter will address such issues and then finally we study SPSL structures as an alternative random alloy quaternary GaInNAs for efficient growth, design manufacture optoelectronic devices based on alloys. One major current studies metastability material. To rather low solubility N GaAs or GaInAs, non-equilibrium growth conditions required, which can be realized only by molecular-beam epitaxy (MBE) Kitatani et al. (1999); Kondow (1996) metal-organic vapour phase (MOVPE) Ougazazaden (1997); Saito (1998). Growing off thermal equilibrium implies certain degree metastability. The aim growing GaInNAs, emitting at telecommunication wavelengths 1.3 μmand, also 1.55 μm, possible incorporating nearly 40% In several per cent N. These concentrations limits feasibility MBE MOVPE substrates. emission wavelength layers was strongly blue-shifted when, after actual layer, temperature raised AlGaAs-based top (such distributed Bragg reflectors vertical-cavity surface-emitting laser (VCSEL) confinement guiding edge structures). led number annealing yield somewhat results Bhat (1998); Francoeur Gilet (2000); Klar (2001); Li Pan Polimeni Rao Spruytte (2001a); v H G Baldassarri Xin (1999). This, ofcourse, partly due used, but strong manifestation this system. full implications just evolving mechanisms causing blue shift band gap suggested Grenouillet (2002); Mussler (2003); (2001b); Tournie Nevertheless, all discussions investigations, so far, that system very promising candidate telecoms particular datacom applications. However, both GaNAs systems, higher nitrogen incorporation, weaker efficiency. A key utilization nitride-arsenide long obtaining defect materials with non-radiative 0

参考文章(80)
RA Mair, JY Lin, HX Jiang, ED Jones, AA Allerman, SR Kurtz, None, Time-resolved photoluminescence studies of InxGa1−xAs1−yNy Applied Physics Letters. ,vol. 76, pp. 188- 190 ,(2000) , 10.1063/1.125698
M. J. Seong, M. C. Hanna, A. Mascarenhas, Composition dependence of Raman intensity of the nitrogen localized vibrational mode in GaAs1−xNx Applied Physics Letters. ,vol. 79, pp. 3974- 3976 ,(2001) , 10.1063/1.1424469
Jin Au Kong, Electromagnetic wave theory ,(1986)
T. Ahlgren, E. Vainonen-Ahlgren, J. Likonen, W. Li, M. Pessa, Concentration of interstitial and substitutional nitrogen in GaNxAs1−x Applied Physics Letters. ,vol. 80, pp. 2314- 2316 ,(2002) , 10.1063/1.1465522
J. Toivonen, T. Hakkarainen, M. Sopanen, H. Lipsanen, Effect of post-growth laser treatment on optical properties of Ga(In)NAs quantum wells IEE Proceedings - Optoelectronics. ,vol. 150, pp. 68- 71 ,(2003) , 10.1049/IP-OPT:20030052
W. J. Fan, M. F. Li, T. C. Chong, J. B. Xia, Electronic properties of zinc‐blende GaN, AlN, and their alloys Ga1−xAlxN Journal of Applied Physics. ,vol. 79, pp. 188- 194 ,(1996) , 10.1063/1.360930
C. Persson, A. Ferreira da Silva, R. Ahuja, B. Johansson, Effective electronic masses in wurtzite and zinc-blende GaN and AlN Journal of Crystal Growth. ,vol. 231, pp. 397- 406 ,(2001) , 10.1016/S0022-0248(01)01470-1
S. Francoeur, G. Sivaraman, Y. Qiu, S. Nikishin, H. Temkin, Luminescence of as-grown and thermally annealed GaAsN/GaAs Applied Physics Letters. ,vol. 72, pp. 1857- 1859 ,(1998) , 10.1063/1.121206
CS Peng, E-M Pavelescu, T Jouhti, J Konttinen, M Pessa, None, Diffusion at the interfaces of InGaNAs/GaAs quantum wells Solid-state Electronics. ,vol. 47, pp. 431- 435 ,(2003) , 10.1016/S0038-1101(02)00384-2
C Skierbiszewski, P Perlin, Pl Wisniewski, W Knap, T Suski, W Walukiewicz, W Shan, KM Yu, JW Ager, EE Haller, JF Geisz, JM Olson, None, Large, nitrogen-induced increase of the electron effective mass in InyGa1−yNxAs1−x Applied Physics Letters. ,vol. 76, pp. 2409- 2411 ,(2000) , 10.1063/1.126360