Mathematical approaches to optimization of cancer chemotherapy

作者: S ZIETZ , C NICOLINI

DOI: 10.1016/S0092-8240(79)90014-4

关键词:

摘要: This paper uses optimal control theory in conjunction with a Gompertzian type model for cellular growth to determine the method of administering cycle non-specific chemotherapy or more generally durations treatment and rest periods during chemotherapy. The performance critera employed relative merits therapy include not only destruction malignant cells, but also sparing critical normal tissue. Since these criteria are at odds one another, solutions found which satisfy Pareto optimality conditions.

参考文章(13)
K.J. Almquist, H.T. Banks, A theoretical and computational method for determining optimal treatment schedules in fractionated radiation therapy Bellman Prize in Mathematical Biosciences. ,vol. 29, pp. 159- 179 ,(1976) , 10.1016/0025-5564(76)90034-1
G SWAN, T VINCENT, Optimal control analysis in the chemotherapy of IgG multiple myeloma Bulletin of Mathematical Biology. ,vol. 39, pp. 317- 337 ,(1977) , 10.1016/S0092-8240(77)80070-0
P. L. Yu, G. Leitmann, Nondominated Decisions and Cone Convexity in Dynamic Multicriteria Decision Problems Multicriteria Decision Making and Differential Games. ,vol. 14, pp. 61- 72 ,(1976) , 10.1007/978-1-4615-8768-2_2
C NICOLINI, The principles and methods of cell sychronization in cancer chemotherapy Biochimica et Biophysica Acta. ,vol. 458, pp. 243- 282 ,(1976) , 10.1016/0304-419X(76)90002-0
Hans Bremermann, A method of unconstrained global optimization Mathematical Biosciences. ,vol. 9, pp. 1- 15 ,(1970) , 10.1016/0025-5564(70)90087-8
Alfred G. Gilman, George B. Koelle, Alfred Gilman, Louis Sanford Goodman, The pharmacological basis of therapeutics ,(2000)
Louis S. GOODMAN, ALFRED GILMAN, William S. Lasdon, THE PHARMACOLOGICAL BASIS OF THERAPEUTICS The American Journal of the Medical Sciences. ,vol. 253, pp. 125- ,(1967) , 10.1097/00000441-196701000-00028
J. Aroesty, T. Lincoln, N. Shapiro, G. Boccia, Tumor growth and chemotherapy: Mathematical methods, computer simulations, and experimental foundations Bellman Prize in Mathematical Biosciences. ,vol. 17, pp. 243- 300 ,(1973) , 10.1016/0025-5564(73)90072-2