A Discrete Global Minimization Algorithm for Continuous Variational Problems

作者: Danil Kirsanov , Steven J. Gortler

DOI:

关键词:

摘要: In this paper, we apply the ideas from combinatorial optimization to find globally optimal solutions continuous variational problems. At heart of our method is an algorithm solve for discrete minimal surfaces. This surface problem a natural generalization planar-graph shortest path problem.

参考文章(16)
Peter Giblin, Graphs, surfaces, and homology ,(1977)
T. C. Hu, A. B. Kahng, G. Robins, Solution of the discrete Plateau problem. Proceedings of the National Academy of Sciences of the United States of America. ,vol. 89, pp. 9235- 9236 ,(1992) , 10.1073/PNAS.89.19.9235
Charles Radin, Lorenzo Sadun, The isoperimetric problem for pinwheel tilings Communications in Mathematical Physics. ,vol. 177, pp. 255- 263 ,(1996) , 10.1007/BF02102438
Boykov, Kolmogorov, Computing geodesics and minimal surfaces via graph cuts international conference on computer vision. pp. 26- 33 ,(2003) , 10.1109/ICCV.2003.1238310
Y. Boykov, V. Kolmogorov, An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision IEEE Transactions on Pattern Analysis and Machine Intelligence. ,vol. 26, pp. 1124- 1137 ,(2004) , 10.1109/TPAMI.2004.60
Joseph O'Rourke, Computational geometry in C ,(1994)