A study of the Arctic NOy budget above Eureka, Canada

作者: R. Lindenmaier , K. Strong , R. L. Batchelor , P. F. Bernath , S. Chabrillat

DOI: 10.1029/2011JD016207

关键词:

摘要: [1] Four years of trace gas measurements have been acquired using the Bruker 125HR Fourier Transform Infrared (FTIR) spectrometer installed at Polar Environment Atmospheric Research Laboratory (PEARL) in Canadian high Arctic. These compared with data from three models, namely Middle Atmosphere Model Data Assimilation System (CMAM-DAS), Global Environmental Multiscale stratospheric model online Belgium CHemistry package (GEM-BACH), and off-line 3D chemical transport SLIMCAT to assess total reactive nitrogen, NOy, budget above Eureka, Nunavut (80.05°N, 86.42°W). The FTIR also satellite by Chemistry Experiment-Fourier Spectrometer (ACE-FTS). is able measure four five primary species that form NOy: NO, NO2, HNO3, ClONO2, while fifth, N2O5, was obtained N2O5/(NO + NO2) ratio derived models ACE-FTS. Combining these results, a four-year time series NOy 15–40 km partial columns calculated. Comparisons each were made, revealing mean differences (± standard error mean) relative (−16.0 ± 0.6)%, (5.5 1.0)%, (−5.8 0.4)% for CMAM-DAS, GEM-BACH, SLIMCAT, respectively. difference between ACE-FTS (5.6 2.3)%. While we found no significant seasonal interannual columns, display nearly twice as much variability during spring summer period.

参考文章(71)
V. Eyring, D.W. Waugh, T.G. Shepherd, SPARC Report on the Evaluation of Chemistry-Climate Models ,(2010)
J. Bacmeister, R. Todling, M. Sienkiewicz, Max J. Suarez, R. D. Koster, M. M. Rienecker, H. C. Liu, J. E. Nielsen, W. Gu, R. Gelaro, L. Takacs, I. Stajner, The GEOS-5 Data Assimilation System-Documentation of Versions 5.0.1, 5.1.0, and 5.2.0 ,(2008)
M. P. Chipperfield, R. L. Jones, Relative influences of atmospheric chemistry and transport on Arctic ozone trends Nature. ,vol. 400, pp. 551- 554 ,(1999) , 10.1038/22999
R. E. Huie, V. L. Orkin, M. J. Kurylo, D. M. Wilmouth, J. R. Barker, C. E. Kolb, J. P. D. Abbatt, S. P. Sander, J. B. Burkholder, P. H. Wine, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies: Evaluation Number 18 Jet Propulsion Laboratory. ,(2015)
Philip Solomon, Brian Connor, James Barrett, Thomas Mooney, Adrian Lee, Alan Parrish, Measurements of stratospheric ClO over Antarctica in 1996-2000 and implications for ClO dimer chemistry Geophysical Research Letters. ,vol. 29, pp. 3- 1 ,(2002) , 10.1029/2002GL015232
G. L. Manney, R. W. Zurek, A. O'Neill, R. Swinbank, On the motion of air through the stratospheric polar vortex Journal of the Atmospheric Sciences. ,vol. 51, pp. 2973- 2994 ,(1994) , 10.1175/1520-0469(1994)051<2973:OTMOAT>2.0.CO;2
J. F. Scinocca, N. A. Mcfarlane, J. Li, D. Plummer, M. Lazare, The CCCma third generation AGCM and its extension into the middle atmosphere Atmospheric Chemistry and Physics. ,vol. 8, pp. 7883- 7930 ,(2008)
Clive D. Rodgers, Brian J. Connor, Intercomparison of remote sounding instruments Journal of Geophysical Research: Atmospheres. ,vol. 108, pp. n/a- n/a ,(2003) , 10.1029/2002JD002299
R. L. Batchelor, F. Kolonjari, R. Lindenmaier, R. L. Mittermeier, W. Daffer, H. Fast, G. Manney, K. Strong, K. A. Walker, Four Fourier transform spectrometers and the Arctic polar vortex: instrument intercomparison and ACE-FTS validation at Eureka during the IPY springs of 2007 and 2008 Atmospheric Measurement Techniques. ,vol. 3, pp. 51- 66 ,(2010) , 10.5194/AMT-3-51-2010