Evaluating alternative gait strategies using evolutionary robotics

作者: William I. Sellers , Louise A. Dennis , Wang W.-J. , Robin H. Crompton

DOI: 10.1111/J.0021-8782.2004.00294.X

关键词:

摘要: Evolutionary robotics is a branch of artificial intelligence concerned with the automatic generation autonomous robots. Usually form robot predefined and various computational techniques are used to control machine's behaviour. One aspect spontaneous walking in legged robots this can be investigate mechanical requirements for efficient bipeds. This paper demonstrates bipedal simulator that spontaneously generates running gaits. The model customized represent range hominoid morphologies predict performance parameters such as preferred speed metabolic energy cost. Because it does not require any motion capture data particularly suitable investigating locomotion fossil animals. predictions modern humans highly accurate terms cost given thus values predicted other bipeds likely good estimates. To illustrate transport calculated Australopithecus afarensis. allows degree maximum extension at knee varied causing adopt gaits varying from chimpanzee-like human-like. costs associated these gait choices information evaluate possible locomotor strategies early hominids.

参考文章(24)
O. Hanagata, M. Fujita, S. Takamura, G. S. Hornby, T. Yamamoto, Autonomous evolution of gaits with the Sony Quadruped Robot genetic and evolutionary computation conference. pp. 1297- 1304 ,(1999)
Patricia Ann Kramer, Modelling the locomotor energetics of extinct hominids The Journal of Experimental Biology. ,vol. 202, pp. 2807- 2818 ,(1999) , 10.1242/JEB.202.20.2807
A.E. Minetti, R.McN. Alexander, A Theory of Metabolic Costs for Bipedal Gaits Journal of Theoretical Biology. ,vol. 186, pp. 467- 476 ,(1997) , 10.1006/JTBI.1997.0407
Takashi Yokoi, Akihiko Takahashi, Hidetaka Okada, Keigo B. Ohyama, Makoto Muraoka, Is the Selection of Body Segment Inertia Parameters Critical to the Results of Kinematic and Kinetic Analysis of Human Movement Anthropological Science. ,vol. 106, pp. 371- 383 ,(1998) , 10.1537/ASE.106.371
Randall D. Beer, John C. Gallagher, Evolving dynamical neural networks for adaptive behavior Adaptive Behavior. ,vol. 1, pp. 91- 122 ,(1992) , 10.1177/105971239200100105