Analytic solution and stationary phase approximation for the Bayesian lasso and elastic net

作者: Tom Michoel

DOI:

关键词:

摘要: The lasso and elastic net linear regression models impose a double-exponential prior distribution on the model parameters to achieve shrinkage variable selection, allowing inference of robust from large data sets. However, there has been limited success in deriving estimates for full posterior coefficients these models, due need evaluate analytically intractable partition function integrals. Here, Fourier transform is used express integrals as complex-valued oscillatory over "regression frequencies". This results an analytic expansion stationary phase approximation functions Bayesian net, where non-differentiability so far eluded such approach. Use this leads highly accurate numerical expectation values marginal distributions coefficients, allows much higher dimensional than previously possible.

参考文章(31)
Mathias Drton, Martyn Plummer, None, A Bayesian information criterion for singular models Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 79, pp. 323- 380 ,(2017) , 10.1111/RSSB.12187
Tarek Rabbani, Laurent El Ghaoui, Vivian Viallon, Safe Feature Elimination for the LASSO and Sparse Supervised Learning Problems arXiv: Learning. ,(2010)
Tom Michoel, Natural coordinate descent algorithm for L1-penalised regression in generalised linear models Computational Statistics & Data Analysis. ,vol. 97, pp. 60- 70 ,(2016) , 10.1016/J.CSDA.2015.11.009
M A Alonso, G W Forbes, Fractional Legendre transformation Journal of Physics A. ,vol. 28, pp. 5509- 5527 ,(1995) , 10.1088/0305-4470/28/19/008
Trevor Park, George Casella, The Bayesian Lasso Journal of the American Statistical Association. ,vol. 103, pp. 681- 686 ,(2008) , 10.1198/016214508000000337
Michael R. Osborne, Brett Presnell, Berwin A. Turlach, On the LASSO and Its Dual Journal of Computational and Graphical Statistics. ,vol. 9, pp. 319- 337 ,(2000) , 10.2307/1390657
Chris Hans, Elastic Net Regression Modeling With the Orthant Normal Prior Journal of the American Statistical Association. ,vol. 106, pp. 1383- 1393 ,(2011) , 10.1198/JASA.2011.TM09241
Qing Li, Nan Lin, The Bayesian elastic net Bayesian Analysis. ,vol. 5, pp. 151- 170 ,(2010) , 10.1214/10-BA506
C. Hans, Bayesian lasso regression Biometrika. ,vol. 96, pp. 835- 845 ,(2009) , 10.1093/BIOMET/ASP047