Elastic Net Regression Modeling With the Orthant Normal Prior

作者: Chris Hans

DOI: 10.1198/JASA.2011.TM09241

关键词:

摘要: … Here we compare the model-averaged Bayesian elastic net estimator ˆβBMA with the traditional elastic net estimator ˆβE in a high-dimensional example, where the p = 300 predictor vari…

参考文章(22)
D. F. Andrews, C. L. Mallows, Scale Mixtures of Normal Distributions Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 36, pp. 99- 102 ,(1974) , 10.1111/J.2517-6161.1974.TB00989.X
Robert E. McCulloch, Edward I. George, APPROACHES FOR BAYESIAN VARIABLE SELECTION Statistica Sinica. ,vol. 7, pp. 339- 373 ,(1997)
Robert Kohn, Michael Smith, David Chan, Nonparametric regression using linear combinations of basis functions Statistics and Computing. ,vol. 11, pp. 313- 322 ,(2001) , 10.1023/A:1011916902934
Jim E. Griffin, Philip J. Brown, Inference with normal-gamma prior distributions in regression problems Bayesian Analysis. ,vol. 5, pp. 171- 188 ,(2010) , 10.1214/10-BA507
Brian G. Osborne, Thomas Fearn, Andrew R. Miller, Stuart Douglas, Application of near infrared reflectance spectroscopy to the compositional analysis of biscuits and biscuit doughs Journal of the Science of Food and Agriculture. ,vol. 35, pp. 99- 105 ,(1984) , 10.1002/JSFA.2740350116
Trevor Park, George Casella, The Bayesian Lasso Journal of the American Statistical Association. ,vol. 103, pp. 681- 686 ,(2008) , 10.1198/016214508000000337
P. J Brown, T Fearn, M Vannucci, Bayesian wavelet regression on curves with application to a spectroscopic calibration problem Journal of the American Statistical Association. ,vol. 96, pp. 398- 408 ,(2001) , 10.1198/016214501753168118
MIKE WEST, On scale mixtures of normal distributions Biometrika. ,vol. 74, pp. 646- 648 ,(1987) , 10.1093/BIOMET/74.3.646
Qing Li, Nan Lin, The Bayesian elastic net Bayesian Analysis. ,vol. 5, pp. 151- 170 ,(2010) , 10.1214/10-BA506
Feng Liang, Rui Paulo, German Molina, Merlise A Clyde, Jim O Berger, Mixtures of g Priors for Bayesian Variable Selection Journal of the American Statistical Association. ,vol. 103, pp. 410- 423 ,(2008) , 10.1198/016214507000001337