Efficient estimation of Weber’s W

作者: Steven T. Piantadosi

DOI: 10.3758/S13428-014-0558-8

关键词:

摘要: Many studies rely on estimation of Weber ratios (W) in order to quantify the acuity an individual’s approximate number system. This paper discusses several problems encountered estimating W using standard methods, most notably low power and inefficiency. Through simulation, this work shows that can best be estimated a Bayesian framework uses inverse (1/W) prior. beneficially balances bias/variance trade-off and, when used with MAP is extremely simple implement. Use scheme substantially improves statistical examining correlates W.

参考文章(42)
E. T. Jaynes, Probability theory : the logic of science The Mathematical Intelligencer. ,vol. 27, pp. 83- 83 ,(2003) , 10.1017/CBO9780511790423
John K. Kruschke, What to believe: Bayesian methods for data analysis Trends in Cognitive Sciences. ,vol. 14, pp. 293- 300 ,(2010) , 10.1016/J.TICS.2010.05.001
A. Nieder, K. Merten, A labeled-line code for small and large numerosities in the monkey prefrontal cortex. The Journal of Neuroscience. ,vol. 27, pp. 5986- 5993 ,(2007) , 10.1523/JNEUROSCI.1056-07.2007
J. Halberda, R. Ly, J. B. Wilmer, D. Q. Naiman, L. Germine, Number sense across the lifespan as revealed by a massive Internet-based sample Proceedings of the National Academy of Sciences of the United States of America. ,vol. 109, pp. 11116- 11120 ,(2012) , 10.1073/PNAS.1200196109
John K. Kruschke, Bayesian data analysis. Wiley Interdisciplinary Reviews: Cognitive Science. ,vol. 1, pp. 658- 676 ,(2010) , 10.1002/WCS.72
John Z. Sun, Grace I. Wang, Vivek K Goyal, Lav R. Varshney, A framework for Bayesian optimality of psychophysical laws Journal of Mathematical Psychology. ,vol. 56, pp. 495- 501 ,(2012) , 10.1016/J.JMP.2012.08.002
Trevor Park, George Casella, The Bayesian Lasso Journal of the American Statistical Association. ,vol. 103, pp. 681- 686 ,(2008) , 10.1198/016214508000000337
Chris Hans, Elastic Net Regression Modeling With the Orthant Normal Prior Journal of the American Statistical Association. ,vol. 106, pp. 1383- 1393 ,(2011) , 10.1198/JASA.2011.TM09241