Mild Propofol Sedation Reduces Frontal Lobe and Thalamic Cerebral Blood Flow: An Arterial Spin Labeling Study.

作者: Neeraj Saxena , Tommaso Gili , Ana Diukova , Danielle Huckle , Judith E. Hall

DOI: 10.3389/FPHYS.2019.01541

关键词:

摘要: Mechanisms of anesthetic drug-induced sedation and unconsciousness are still incompletely understood. Functional neuroimaging modalities provide a window to study brain function changes during anesthesia allowing us explore the sequence neuro-physiological associated with anesthesia. Cerebral perfusion change under an assumption intact neurovascular coupling is indicator in large-scale neural activity. In this experiment, we have investigated resting state cerebral blood flow (CBF) human mild sedation, propofol. Arterial spin labeling (ASL) provides non-invasive, reliable, robust means measuring can therefore be used investigate central drug effects. Mild propofol sedation-related CBF were studied at rest (n = 15), 3 T MR scanner using PICORE-QUIPSS II ASL technique. was reduced bilateral paracingulate cortex, premotor Broca’s areas, right superior frontal gyrus also thalamus. This demonstrates that induces suppression key cortical (frontal lobe) subcortical (thalamus) regions sedation.

参考文章(18)
DORIS A. CHERNIK, DENNIS GILLINGS, HARRIET LAINE, JUDITH HENDLER, JONATHAN M. SILVER, ARNOLD B. DAVIDSON, ELIAS M. SCHWAM, JUDITH L. SIEGEL, Validity and reliability of the Observer's Assessment of Alertness/Sedation Scale: study with intravenous midazolam. Journal of Clinical Psychopharmacology. ,vol. 10, pp. 244- 251 ,(1990) , 10.1097/00004714-199008000-00003
Michael Byas–Smith, Michael A Frölich, John R Votaw, Tracy L Faber, John M Hoffman, Cerebral blood flow during propofol induced sedation. Molecular Imaging and Biology. ,vol. 4, pp. 139- 146 ,(2002) , 10.1016/S1536-1632(01)00006-3
Robert A. Veselis, Vladimir A. Feshchenko, Ruth A. Reinsel, Bradley Beattie, Timothy J. Akhurst, Propofol and thiopental do not interfere with regional cerebral blood flow response at sedative concentrations. Anesthesiology. ,vol. 102, pp. 26- 34 ,(2005) , 10.1097/00000542-200501000-00008
Eric C. Wong, Richard B. Buxton, Lawrence R. Frank, Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II) Magnetic Resonance in Medicine. ,vol. 39, pp. 702- 708 ,(1998) , 10.1002/MRM.1910390506
UnCheol Lee, Seunghwan Kim, Gyu-Jeong Noh, Byung-Moon Choi, Eunjin Hwang, George A. Mashour, The directionality and functional organization of frontoparietal connectivity during consciousness and anesthesia in humans Consciousness and Cognition. ,vol. 18, pp. 1069- 1078 ,(2009) , 10.1016/J.CONCOG.2009.04.004
T. Gili, N. Saxena, A. Diukova, K. Murphy, J. E. Hall, R. G. Wise, The thalamus and brainstem act as key hubs in alterations of human brain network connectivity induced by mild propofol sedation The Journal of Neuroscience. ,vol. 33, pp. 4024- 4031 ,(2013) , 10.1523/JNEUROSCI.3480-12.2013
Emmanuel A. Stamatakis, Ram M. Adapa, Anthony R. Absalom, David K. Menon, Changes in resting neural connectivity during propofol sedation. PLOS ONE. ,vol. 5, pp. 14224- ,(2010) , 10.1371/JOURNAL.PONE.0014224
Thomas T. Liu, Eric C. Wong, A signal processing model for arterial spin labeling functional MRI. NeuroImage. ,vol. 24, pp. 207- 215 ,(2005) , 10.1016/J.NEUROIMAGE.2004.09.047
Pierre Boveroux, Audrey Vanhaudenhuyse, Marie-Aurélie Bruno, Quentin Noirhomme, Séverine Lauwick, André Luxen, Christian Degueldre, Alain Plenevaux, Caroline Schnakers, Christophe Phillips, Jean-François Brichant, Vincent Bonhomme, Pierre Maquet, Michael D. Greicius, Steven Laureys, Mélanie Boly, Breakdown of within- and between-network Resting State Functional Magnetic Resonance Imaging Connectivity during Propofol-induced Loss of Consciousness Anesthesiology. ,vol. 113, pp. 1038- 1053 ,(2010) , 10.1097/ALN.0B013E3181F697F5
Kevin Murphy, Ashley D. Harris, Ana Diukova, C. John Evans, David J. Lythgoe, Fernando Zelaya, Richard G. Wise, Pulsed arterial spin labeling perfusion imaging at 3 T: estimating the number of subjects required in common designs of clinical trials. Magnetic Resonance Imaging. ,vol. 29, pp. 1382- 1389 ,(2011) , 10.1016/J.MRI.2011.02.030