A role for the cystic fibrosis transmembrane conductance regulator in the nitric oxide-dependent release of Cl- from acidic organelles in amacrine cells

作者: Vijai Krishnan , J. Wesley Maddox , Tyler Rodriguez , Evanna Gleason

DOI: 10.1152/JN.00511.2017

关键词:

摘要: Although CFTR function has been studied extensively in the context of epithelia, relatively little is known about its neurons. We show that involved an NO-dependent release o...

参考文章(71)
Beth Ann Murphy, Kurt A. Fakira, Zhentao Song, Annie Beuve, Vanessa H. Routh, AMP-activated protein kinase and nitric oxide regulate the glucose sensitivity of ventromedial hypothalamic glucose-inhibited neurons American Journal of Physiology-cell Physiology. ,vol. 297, ,(2009) , 10.1152/AJPCELL.00127.2009
Shigeru BH Ko, Nikolay Shcheynikov, Joo Young Choi, Xiang Luo, Kenichi Ishibashi, Philip J Thomas, Joo Young Kim, Kyung Hwan Kim, Min Goo Lee, Satoru Naruse, Shmuel Muallem, A molecular mechanism for aberrantCFTR-dependent HCO3- transport in cystic fibrosis The EMBO Journal. ,vol. 21, pp. 5662- 5672 ,(2002) , 10.1093/EMBOJ/CDF580
Holli Shumaker, Hassane Amlal, Raymond Frizzell, Charles D. Ulrich, Manoocher Soleimani, CFTR drives Na+- n HCO 3 − cotransport in pancreatic duct cells: a basis for defective HCO 3 − secretion in CF American Journal of Physiology-cell Physiology. ,vol. 276, ,(1999) , 10.1152/AJPCELL.1999.276.1.C16
Richard T. Weyler, Karin A. Yurko-Mauro, Ronald Rubenstein, Wouter J. W. Kollen, William Reenstra, Steven M. Altschuler, Marie Egan, Andrew E. Mulberg, CFTR is functionally active in GnRH-expressing GT1-7 hypothalamic neurons. American Journal of Physiology-cell Physiology. ,vol. 277, ,(1999) , 10.1152/AJPCELL.1999.277.3.C563
J. Biwersi, A. S. Verkman, Functional CFTR in endosomal compartment of CFTR-expressing fibroblasts and T84 cells. American Journal of Physiology-cell Physiology. ,vol. 266, ,(1994) , 10.1152/AJPCELL.1994.266.1.C149
Arnaud Billet, Yanlin Jia, Timothy J. Jensen, Yue-Xian Hou, Xiu-Bao Chang, John R. Riordan, John W. Hanrahan, Potential sites of CFTR activation by tyrosine kinases Channels. ,vol. 10, pp. 247- 251 ,(2016) , 10.1080/19336950.2015.1126010
Jiexin Luo, Mary D. Pato, John R. Riordan, John W. Hanrahan, Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases American Journal of Physiology-cell Physiology. ,vol. 274, ,(1998) , 10.1152/AJPCELL.1998.274.5.C1397
J. Wesley Maddox, Evanna Gleason, Nitric oxide promotes GABA release by activating a voltage-independent Ca2+ influx pathway in retinal amacrine cells Journal of Neurophysiology. ,vol. 117, pp. 1185- 1199 ,(2017) , 10.1152/JN.00803.2016
N Melis, M Tauc, M Cougnon, S Bendahhou, S Giuliano, I Rubera, C Duranton, Revisiting CFTR inhibition: a comparative study of CFTRinh -172 and GlyH-101 inhibitors. British Journal of Pharmacology. ,vol. 171, pp. 3716- 3727 ,(2014) , 10.1111/BPH.12726
Tzyh-Chang Hwang, David N. Sheppard, Gating of the CFTR Cl− channel by ATP-driven nucleotide-binding domain dimerisation The Journal of Physiology. ,vol. 587, pp. 2151- 2161 ,(2009) , 10.1113/JPHYSIOL.2009.171595