Using CNN with Bayesian optimization to identify cerebral micro-bleeds

作者: Piyush Doke , Dhiraj Shrivastava , Chichun Pan , Qinghua Zhou , Yu-Dong Zhang

DOI: 10.1007/S00138-020-01087-0

关键词:

摘要: This article studies the problem of detecting cerebral micro-bleeds (CMBs) using a convolutional neural network (CNN). Cerebral are increasingly recognized neuroimaging findings, occurring with cerebrovascular diseases, dementia, and normal aging. Naturally enough, it becomes necessary to detect CMBs in early stages life. The focus this is infuse new techniques like Bayesian optimization find optimum set hyper-parameters efficiently, making even simplest CNN architectures perform well on problem. Experimentally, we observe our (five layers, i.e., two convolution, pooling, one fully connected) achieves accuracy = 98.97%, sensitivity 99.66%, specificity 98.14%, precision 98.54% test (hold-out validation) when calculated over an average ten runs. proposed model outperformed state-of-the-art methods.

参考文章(31)
Hao Chen, Lequan Yu, Qi Dou, Lin Shi, Vincent C T Mok, Pheng Ann Heng, Automatic detection of cerebral microbleeds via deep learning based 3D feature representation international symposium on biomedical imaging. pp. 764- 767 ,(2015) , 10.1109/ISBI.2015.7163984
Amir Fazlollahi, Fabrice Meriaudeau, Luca Giancardo, Victor L Villemagne, Christopher C Rowe, Paul Yates, Olivier Salvado, Pierrick Bourgeat, AIBL Research Group, Computer-aided detection of cerebral microbleeds in susceptibility-weighted imaging Computerized Medical Imaging and Graphics. ,vol. 46, pp. 269- 276 ,(2015) , 10.1016/J.COMPMEDIMAG.2015.10.001
Wei Bian, Christopher P. Hess, Susan M. Chang, Sarah J. Nelson, Janine M. Lupo, Computer-aided detection of radiation-induced cerebral microbleeds on susceptibility-weighted MR images. NeuroImage: Clinical. ,vol. 2, pp. 282- 290 ,(2013) , 10.1016/J.NICL.2013.01.012
Amir Fazlollahi, Fabrice Meriaudeau, Victor L. Villemagne, Christopher C. Rowe, Paul Yates, Olivier Salvado, Pierrick Bourgeat, Efficient machine learning framework for computer-aided detection of cerebral microbleeds using the Radon transform international symposium on biomedical imaging. pp. 113- 116 ,(2014) , 10.1109/ISBI.2014.6867822
C. Cordonnier, W. M. van der Flier, J. D. Sluimer, D. Leys, F. Barkhof, P. Scheltens, Prevalence and severity of microbleeds in a memory clinic setting Neurology. ,vol. 66, pp. 1356- 1360 ,(2006) , 10.1212/01.WNL.0000210535.20297.AE
Yuriko Nakata-Kudo, Toshiki Mizuno, Kei Yamada, Kensuke Shiga, Kenji Yoshikawa, Satoru Mori, Tunehiko Nishimura, Kenji Nakajima, Masanori Nakagawa, Microbleeds in Alzheimer disease are more related to cerebral amyloid angiopathy than cerebrovascular disease. Dementia and Geriatric Cognitive Disorders. ,vol. 22, pp. 8- 14 ,(2006) , 10.1159/000092958
Timothy P.L. Roberts, David Mikulis, Neuro MR: principles. Journal of Magnetic Resonance Imaging. ,vol. 26, pp. 823- 837 ,(2007) , 10.1002/JMRI.21029
Jens Fiehler, Cerebral microbleeds: old leaks and new haemorrhages. International Journal of Stroke. ,vol. 1, pp. 122- 130 ,(2006) , 10.1111/J.1747-4949.2006.00042.X
Samuel R.S. Barnes, E. Mark Haacke, Muhammad Ayaz, Alexander S. Boikov, Wolff Kirsch, Dan Kido, Semiautomated detection of cerebral microbleeds in magnetic resonance images. Magnetic Resonance Imaging. ,vol. 29, pp. 844- 852 ,(2011) , 10.1016/J.MRI.2011.02.028
S. H. Lee, H. J. Bae, S. J. Kwon, H. Kim, Y. H. Kim, B. W. Yoon, J. K. Roh, Cerebral microbleeds are regionally associated with intracerebral hemorrhage Neurology. ,vol. 62, pp. 72- 76 ,(2004) , 10.1212/01.WNL.0000101463.50798.0D